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ABSTRACT

In this paper we present the DeSiX design space exploration methodology for software component-based systems

on multiprocessor architectures. The proposed technique adopts multi-dimensional quality attribute analysis in

the early design phases and is based on (1) various types of models for software components, processing nodes,

memories and bus links, (2) scenarios of system critical execution, allowing the designer to focus only on relevant

static and dynamic system configurations, (3) simulation of tasks automatically reconstructed for each scenario

and (4) Pareto curves for identification of optimal architecture alternatives. The feasibility of our methodology

is shown by a detailed case study of a car radio navigation system, where te starting point is five candidate

system architectures, representing different cost versus performance sensitivity versus reliability tradeoffs.

Keywords: Design Space Exploration, Software Quality, Component-Based Software Architecture, Performance

Prediction, Quality Attribute Trade-off, Multi-Criteria Design

1. INTRODUCTION

A major challenge in system development is finding the right balance between the different quality requirements

that a system has to meet. Time-to market constraints require that design decisions are taken as early as possible

in the development process. A recent trend is the assembly of systems out of existing building blocks (which can

be both software and hardware components) as this has the potential of reducing development time as well as

development cost.

To solve this problem, the architect should be able to easily construct models of architectural alternatives and

assess their quality properties. Essentially he needs a means to efficiently explore the design space. This requires

the ability to assess the quality properties of component-based architectural models. Some work in this direction
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has been done by approaches towards the predictable assembly problem1 ,2 ,3 . However, these approaches focus

on the prediction of a single quality attribute, whereas assessment of multiple quality attributes is needed in

order to motivate design trade-offs. A related work on multi-dimensional design space exploration is given in

Section 6.

In this paper we propose the so-called DeSiX (Design, Simulate, eXplore) methodology that uses a component-

based architecture as the skeletal structure, onto which multiple analysis methods for different quality properties

are attached. A distinguishing feature of our approach is that the analysis is based on the evaluation of a num-

ber of key scenarios. The use of scenarios enables efficient analysis while also enabling the architect to trade

modelling effort (modelling multiple scenario’s improves the ’coverage’ of the behaviour of the system) against

confidence in the reliability of the results.

The main contribution issues of the proposed methodology are the following: (A) It is adopted for software

component-based technologies that allows wide reuse of the software, and increases development speed. (B)

Multi-objective quality attributes can be taken into consideration at the same time. Any type of attribute can

be taken for analysis, because a component can be supplied with non-limited number of model types (resource,

behaviour, reliability, safety, cost models). (C) The methodology supports design of multiprocessor systems. It

allows mapping software components onto hardware nodes, thereby increasing design flexibility and efficiency.

(D) DeSiX enables assessment of the quality attributes based not only on the static architecture, but also on the

predicted dynamic behaviour of a complete SW/HW system. (E) It adopts a multi-objective Pareto analysis18

for design space exploration, thereby helping the designer to easily cope with contradictory requirements.

In this paper we apply our methodology to a design case study of a Car Radio Navigation (CRN) system.

Our analysis includes timeliness, resource utilization (CPU, bandwidth) and reliability. Ongoing work includes

the analysis technique extension for other system properties; including reliability and cost.

Structure of the paper is as follows. In Section 2 we summarize the Robocop component model used as a

middleware in the CRN system. In Section 3 we outline the design space exploration process by explaining its

main steps. The scenario simulation approach, which is a core part of the DeSiX methodology, is explained in

Section 4. The practical aspects of the methodology are illustrated through application to the Car Navigation

case study, which is described in Section 5. We conclude the paper with a discussion of related work in Section

6 and conclusions in Section 7.

2. COMPONENT-BASED SOFTWARE ARCHITECTURE

As we are focusing on design space exploration techniques for component-based architecture1 , let us first

give a short outline of the used component-based framework. Within the international Space4U project∗, we

have developed a Robocop Component-Based Architecture (CBA)21 . The Robocop CBA complies with the
∗Space4U is part of the ITEA research program funded by the European Union.



common COTS standard for component-based development. This architecture is developed for middleware in

consumer devices, with an emphasis on robustness and reliability. The Robocop CBA is similar to CORBA15

and Koala16 , but enables more efficient quality attributes realization via modelling techniques. For example,

a component designer can supply a component resource model along with the component’s executable code.

A designer composes an application from a number of components and can predict the application resource

consumption, using the set of such component resource models.

The Robocop CBA is highly efficient, particularly for embedded systems and Systems-on-Chip. Firstly,

it allows decomposing the processing software into functional blocks and then mapping these blocks on the

architecture in an optimal way. Secondly, the supporting Robocop Run-Time Environment has a built-in Quality-

of-Service framework, that enables run-time monitoring and enforcement of the system resources. Finally, the

freedom of defining the necessary types of models allows addressing not only the processor usage, but also other

important attributes (e.g. memory, bus load, reliability and robustness).

The primary goal of the component paradigm is that systems can be built from a set of existing components.

These components may have been developed by the organization that constructs the system or by some third-

party on the market. This approach allows (A) to avoid the costly build-from-scratch development cycle and

(B) to flexibly select components (from among a set of similar ones) that provide the best fit in terms of quality

attributes.

Let us now define the Robocop component model in more detail. A Robocop component is a set M of possibly

related models, as depicted in Fig. 1(a). Each individual model m provides a particular type of information about

the component. Models can be represented in readable form (e.g. documentation) or in binary code. One of the

models is the executable model that contains the executable component. Other examples are: resource model,

reliability model, and behaviour model.

A component offers functionality through a set of ‘services’ P (see Fig. 1(b)). Services are an executable en-

tities, which are the Robocop equivalents of public classes in object-oriented (OO) programming. More formally,

the arbitrary executable model m is specified in Fig. 1(c).

Services are instantiated at run-time, using a service manager. The resulting entity is called ‘service instance’,

which is a Robocop equivalent of an object in OO programming. A Robocop service may define several interfaces

(ports). We distinguish a set of ‘provides’ ports PR and a set of ‘requires’ ports REQ. The former defines

interfaces that are offered by the service, while the latter defines interfaces that the service needs from other

services in order to operate properly. An interface is defined as a set of implemented operations impl opr. The

binding between service instances in the application is made via a pair of provides-requires interfaces.

Note that a Robocop service is equivalent to a component in COM or CORBA, i.e. a service is a subject of

composition, and it has input and output ports. A Robocop component is a deployable container that packages

these services. Therefore, in the Robocop context, the term composition stands for a composition of services.



Figure 1. (a) Robocop component model, (b) example of executable component, (c) specification of a component

executable model.

The Robocop CBA implies no implementation-level constraints. The architecture has no limitations on

programming languages and platforms. A service can implement any number of threads. Besides this, both

synchronous and asynchronous communication are possible.

3. DESIGN SPACE EXPLORATION METHODOLOGY

In this section we present the DeSiX design space exploration methodology and mention its main assumptions.

At the system design phase, we assume that the components are already available (no need to build from

scratch). The component development process stays out of the scope of this paper. For the detailed information

on this topic see the Robocop tutorial21 . The second assumption is that the necessary component models

(resource, reliability, behaviour models) are specified by a component developer and provided in the shipped

component package. However, the construction rules (meta-model) for each model are specified by the Robocop

framework. The meta-models are described below in this paper.

The DeSiX methodology comprises several phases (see Fig. 2), that can be iteratively repeated till the best

design solution is found. In the above-mentioned figure, these phases are represented in the core circle. The

periphery circle describes tooling support for easy adaptation of the DeSiX methodology in the design place. For

this purpose, we have developed a toolkit called Robocop Real-Time Integration Environment (RTIE). The toolkit

guides the designer through the DeSiX phases, automates the complex simulation and compilation operations,

and gives him necessary graphical means for the component composition and design alternative analysis tasks.

Let us outline the methodology phases. A detailed description is given in the following subsections.

Software specification. After requirements analysis, the designer selects available software components

(from the RTIE Repository), whose services will satisfy defined functional requirements and may satisfy extra-

functional requirements. By means of the RTIE Graphical Composer, the designer instantiates the services and

binds them together, thereby specifying the so-called software component composition. A composition example

is depicted in the Fig. 3 and represents an MPEG-4 coding application from the case-study discussed in20 . In



Figure 2. Main phases and supporting tools of the DeSiX methodology.

Figure 3. Example composition of software components into an MPEG-4 coding application.

this example, there are 5 services instantiated and bound together in order to read a bit stream, decompress it

and render the decoded video on a screen. The buffers are used to store the intermediate data between the main

processing steps. The process flow in a component-based application is defined by self-triggering (active) services

or by flow triggers implemented on a higher application level. In this example, there are three active services:

Reader, Decoder and Renderer. Each 40 ms Reader reads the bit stream and stores data in Buffer1; Decoder

gets data from Buffer1, decodes it and stores a frame in Buffer2; Renderer gets a frame from Buffer2 and displays

it on a screen. Note that each component contributing his service to an application should encapsulate a set of

models (resource, behaviour, reliability, etc) in its distribution package.

Hardware specification. The hardware (HW) architecture specification can be done in parallel with

software specification. The DeSiX methodology does not constrain the HW architecture to a specific topology,

number of processing nodes, type of memory, buses and scheduling policy. However, it requires modelling of the



HW elements. The modelling aspects are (but not restricted to): processing speed, memory addressing type,

bus bandwidth, reliability, cost per element, etc. The meta-models are defined by the DeSiX methodology. The

designer selects the hardware elements from the RTIE Repository and combines them on the hardware graphics

plane. An example of the HW architecture is depicted in Fig. 4.

Figure 4. Example hardware architecture specification.

Mapping. Once the software composition and hardware architecture are specified, the mapping of the

software components on the hardware cores can be performed. The mapping dictates on which processing core

each component should be executed. Various mapping alternatives are possible in this stage. Each of the

alternatives represents a static system architecture. The mapping example is given in Fig. 5.

Figure 5. SW/HW mapping phase.

Here, the Decoder service is mapped on the DSP processor because it provides computational expensive

operations. The rest of the services are mapped on the general-purpose MIPS core. Note, that this mapping

imposes Decoder-to-Buffer communication via the bus. The next phases are required to synthesize the dynamic

system architecture or, in other words, behaviour of the system.

Execution Architecture. A system cost attribute can be found analytically given a static architecture

and cost values of its constituent parts. However, for the prediction of other important system attributes

(performance, timeliness, power consumption and reliability) behavioral characteristics of a system are needed. In

our approach, we obtain these characteristics through the scenario simulation method19 . This method assembles

a model of the execution architecture by composing models of the behavior of individual software components,



models of resource use and models of resource management policies (such as scheduling). The scenario simulation

method is described in more details in the next section. As an output, the method provides the following data:

(a) specification of the tasks (processes) running in the system for the designed architecture, (b) data and

communication dependencies between the tasks, (c) processing nodes, components and their operations involved

in each task (see Fig. 6.A), (d) execution timeline for the tasks acquired from simulation (see Fig. 6.B) and (e)

hardware resource consumption (performance) of the designed architecture. These models key characteristics of

the dynamic view on the system architecture.

Figure 6. (A) Example of a task distribution over processing nodes and software components, (B) Example of a task

execution timeline

Reliability Analysis. The model of execution architecture constructed in the previous step is subsequently

used as the skeleton for modelling and analysis of reliability properties of the architecture. As depicted in Fig. 7,

the reliability models of the constituent software and hardware elements are mapped on the predicted execution

timeline. A reliability model of an element specifies a probability of success (opposite to probability of failure)

of that element. A component reliability model describes probability of success (no erroneous response) of each

operation implemented by the component. The probability success value can be extracted in the component

development stage by endurance or regression tests. The execution timeline (see Fig. 6.b) shows which opera-

tions were executed and how many times per defined simulation period each operation was executed. Thereby,

aggregating the probabilities of success for the operations, nodes, memories and busses, we can calculate an

architecture’s reliability for certain period.

Figure 7. Acquiring reliability per use case from the dynamic architecture and corresponding reliability models



The operational semantics for system reliability calculation is presented in Appendix I.

Pareto multi-objective analysis. Inserting the number of specified architectures into the RTIE Pareto

analysis tool, we strive for finding a dominant architecture solution, or a number of optimal non-dominant solu-

tions. Pareto analysis for multi-objective optimization is a powerful means for resolving conflicting objectives.18

The multi-objective optimization problem does not yield a unique solution. Instead, it yields a set of solutions

that are Pareto optimal, which form the Pareto frontier design space. In Fig. 8 we depict a Pareto diagram

for finding optimal architectures with two-dimensional objective: system cost and critical task latency. Each

architecture solution is placed on the diagram according to its attribute values. Pareto curve passes through

the optimal non-dominant architectures A, C and E. The rest of the solutions (above/right from the curve) are

not optimal. Obviously, the Architecture B is worse than the Architecture C because it more expensive and

slower. The same holds for the Architecture D. The further analysis can be done for the optimal architectures.

If, for instance, the timing requirement for the critical task is 29 ms, then the Architecture E can be rejected

as a risky solution. If the system cost is a dominant attribute, than we may consider Architecture C or E as

preferred optimal solutions. The three- and four-dimensional optimization is more challenging for visualization,

but conceptually the same principle holds.

Figure 8. Two-dimensional objective design space exploration diagram, using the Pareto curve.

4. SCENARIO SIMULATION APPROACH

As depicted in Fig. 2, the scenario simulation approach is an integral part of the DeSiX methodology. The

approach enables early predictions of performance and behavioural properties of a designed architecture. The

output from the simulation serves as a skeleton for further analyses of attributes that depend on the timing of

internal system actions (performance, security, reliability, etc).

The approach is based on three concepts:

• Models of behaviour and resource usage of the system’s component

• Identification of Key Execution Scenarios of the complete system; such as situations in which the resources

are potentially overloaded,



• Simulation of the scenarios which results in timing behaviour of the architecture.

The main assumption for the approach is that each component has accompanying resource- and behaviour models,

and that each hardware part has a performance model. The resource model contains processing, bandwidth and

memory requirements of each operation implemented by the component. The behaviour model specifies for each

implemented operation a sequence of external calls to operations of other interfaces. The external call is a

(synchronous or asynchronous) invocation of other interface’s operation made inside the implemented operation.

Besides this, the behaviour model may specify thread triggers, if they are implemented by the services of the

component. The performance model of a hardware part specifies its processing capabilities. For a processing core

it is a frequency rate and scheduling policy; for memory it is a memory size and addressing type; for networking

means - bus size in bits, frequency and scheduling policy.

Figure 9. Workflow phases of the scenario simulation approach.

The workflow of our approach (see Fig. 9) is based on the three following phases.

4.1. Scenario Identification

For a static system architecture, the designer defines a set of resource-critical scenarios† and for each of them

specifies an application scenario model. In the scenario, the designer may specify stimuli (events or thread

triggers) that influence the system behaviour. For a stimulus, the designer may define the burst rate, minimal

interarrival time, period, deadline, offset, jitter, task priority, and so on. In Fig. 10, the designer introduces

three stimuli (periodic triggers) that calls reading, decoding and rendering operations each 40 ms. By defining

the stimuli, the designer specifies autonomous behaviour of the system, or emulates an environmental influence

(interrupts, network calls) to the system. Later, the code generation tool may implement these stimuli on the

application level. Finally, for each critical scenario, a developer initializes (gives a value to) all input parameters

of the constituent components and stores the value into the corresponding scenario model. Consequently, the

result of this phase is a set of critical execution scenarios, which sometimes may differ in the parameter values,

or in a burst rate of a certain event.
†Critical scenarios are the application execution configurations that may introduce processor, memory or bus overload.



Figure 10. Structure of a critical execution scenario.

The scenario-based approach reduces the designer efforts, allowing him to analyse only scenarios of concern,

but not all possible system configurations and execution profiles in one view.

4.2. Generation of Scenario Tasks

The application scenario, resource, behaviour and performance models are jointly compiled by the RTIE Compiler.

The objective of the compilation is to reconstruct (generate) the tasks running in the application. Prior to

compilation, the task-related data is spread over different models and components. For instance, the task

periodicity may be specified in an application scenario model, whereas the information about the operation call

sequence comprising the task is spread over relevant component behaviour models. The compiler combines these

two types of data in the task information containing period, jitter, offset, deadline and operation sequence call

graph.

The task generation concepts for the decoding example works as follows. The behaviour model of the De-

coder component specifies the operation call sequence of the operation decode(): getFrame(), storeFrame()

(see Fig. 11.a). Afterwards, the compiler gathers from related behavior models the behaviour of the latter

two operations. The Buffer’s operation getFrame() calls one operation belonging to other interfaces: ILog-

Data.logEvent()(see Fig. 11.b).

If an operation has an empty operation call sequence (does not call operations belonging to other interfaces),

it is considered as a leaf and the task generation proceeds to the next branch. Let us assume that operation

ILogData.logEvent() is such a leaf. The next operation storeFrame() then also calls this leaf operation: ILog-

Data.logEvent() (see Fig. 11.c). Thus, the complete reconstructed sequence of the operations executed in the

task is as depicted in Fig. 11.d.

A resource consumption property of each operation in this sequence is specified in the claim primitive in the

related component resource model. Knowing this data, we can calculate total resource consumption of the task.

For example, the CPU time used by the task (execution time) on a reference processing core is the sum of CPU

times used by the operations composing the task. In Fig. 11.d, the total execution time of the task amounts

to: 8ms + 5ms + 2ms + 5ms + 2ms = 22ms. The other task parameters (period, offset, and deadline) and

precedence are obtained from corresponding stimulus properties that are specified in the scenario model.



Figure 11. a) sequence of operation calls (behaviour) of decode() operation; b) behaviour of operation getFrame(); c)

behaviour of operation storeFrame(); d) decoding task generated from the models.

4.3. Scenario Simulation and Performance Analysis

An application developer deploys one of the virtual schedulers (from RTIE tool) to simulate the execution of the

generated task pool, thereby simulating the execution of the defined scenario. The simulation scheduling policy

of the application execution should be compliant with the scheduling policy of the target operating system. The

resulting data from the scheduler is a task execution timeline. This timeline allows extracting the behaviour,

real-time, memory- and bus-related performance properties of an application (system). The timeline example is

given in Fig. 6.b. From the timeline it is known which operation is executed on each node at every moment.

The scenario simulation approach is specified in our previous publication19 in more detail. The following

section describes a case study validating the proposed DeSiX methodology.

5. CASE STUDY: DISTRIBUTED CAR RADIO NAVIGATION SYSTEM

The case study for a distributed in-car radio navigation system was selected from the case study for Modular

Performance Analysis given in17 . The system has three major logical/functional blocks (see Fig. 12).

Figure 12. Overview of the functional blocks of the car radio navigation system.



• ”The man-machine interface (MMI) that takes care of all interactions with the end-user, such as handling

key inputs and graphical display output.

• The navigation functionality (NAV) responsible for destination entry, route planning and turn-by-turn

route guidance giving the driver both audible and visual advices. The navigation functionality relies on

the availability of a map database and positioning information (for example tacho signal and GPS, both

not shown here).

• The radio functionality (RAD) responsible for basic tuner and volume control as well as handling of traffic

information services such as RDS-TMC (Traffic Message Channel). TMC is broadcasted along with the

audio signal of radio channels.”

Key issues of the case study. The general goal of the case study is to validate the proposed design space

exploration methodology. Technically, we are going to address the following goal: given a set of functional and

real-time requirements, as well as a set of software components and hardware blocks, to find a set of optimal

architecture solutions, taking into account four quality objectives - critical task latencies, performance sensitivity,

system reliability and cost.

The given system requirements are portrayed in Table 1.

Table 1. Requirements for a car radio navigation system.

Req. ID Requirement description

F1 System shall be able to gradually (scale = 32 grads) change the sound volume

RT1 The response time of the operation F1 to the user is less than 200ms (per grade)

F2 System shall be able to find and retrieve an address specified by user

RT2 The response time of the operation F2 to the user is less than 200ms

F3 The system should be able to receive and handle TMC message

RT3 The response time to the user of the operation F3 is less than 1000ms

Available software components and their models. Assume, we have a set of available components from

the RTIE Repository (actually, we have prepared them for a case study): MMI, RAD, and NAV components,

each carrying identically named service. The services, their provides/requires ports and operations are given in

Fig. 13.

The MMI service provides IGUIControl interface and requires to be bound to IParameters and IDatabase

interfaces. The IGUIControl interface provides access to three implemented operations: setVolume (handles

set volume rotary button request from the user), setAddress (handles set address keyboard request from the



Figure 13. Services used for the case study.

user) and updateScreen (updates the GUI display of the device). The NAV service provides IDatabase, ITMC

interfaces and requires operations from the IGUIControl interface. The IDatabase interface gives access to

addressLookup() operation, which queries the address in the database and finds a path to this address. The

ITMC interface provides an access to decodeTMC() operation. The RAD service provides IParameters, IReceiver

interfaces and requires ITMC interface. The two operations implemented by this service are adjustVolume() and

receiveTMC().

Each component was accompanied with their corresponding resource, behaviour models (see simplified version

in Fig. 14), reliability and cost models. The resource model specifies resource requirements per individual compo-

nent operation, while the behaviour model also describes the underlying calls to other operations per component

operation as well as thread triggers (if existing) implemented by this operation. The resource usage data per

operation has been extracted by testing and profiling of each individual component. The operation behaviour

data has been generated from the component source code. Reading the RAD model, we can see that the opera-

tion adjustVolume() calls once synchronously IGUIControl.updateScreen() operation. The maximum CPU claim

of the operation adjustVolume() equals to 1E5 cycles. The CPU claim numbers are acquired by profiling on a

reference RISC processor. Note that the CPU claim of called IGUIControl.updateScreen() operation is specified

in the MMI resource model - 5E5 cycles. The model also shows the bus usage of the adjustVolume() operation:

4 bytes. That means the operation sends outside (in this case as an argument of updateScreen() operation) 4

bytes of data.

Software architecture specification. Following the DeSiX methodology, we composed a service (compo-

nent) assembly (see Fig. 15) from the available services. The three services were instantiated and bound together

via pairs of their provides/requires interfaces. This assembly satisfies the three above-mentioned functional

requirements F1, F2 and F3.

Hardware specification and mapping. The next phase is to define a hardware architecture and map the

software components on it. From the MPA case study17 , we took five alternative architectures with different

mapping schemas (see Fig. 16). Note that the capacity of the processing cores and communication infrastructure

is realistic - they were taken from the datasheets of several commercially available automotive CPUs. The

multi-objective design space analysis will be carried out against these five solutions.



Figure 14. Behaviour and resource models of the selected components.

Figure 15. The component assembly of the car navigation system.

Having defined the system architecture we can proceed to the scenario simulation approach workflow to find

the behaviour and performance attributes of the system.

5.1. Scenarios and Simulation

For our case study, we have selected three distinctive scenarios (defined in17 ) in order to efficiently access

the architecture against the six defined requirements. These scenarios impose the highest possible load on the

hardware resources in order to evaluate the real-time requirements RT1, RT2 and RT3.

”Change Volume” scenario: The user turns the rotary button and expects instantaneous audible and

visual feedback from the system. The maximum rotation speed of the button is 1 sec from lowest to highest

position. For emulating this user activity, we introduced (by RTIE graphical means) the VolumeStimulus task

trigger (see Fig. 17.a). The parameters of the trigger are defined in the following way: the event period is set to

1/32 sec (the volume button scale contains 32 grades). The deadline for the task is set to 200 ms, according to

the requirement R1. The trigger and component assembly resemble a model of the scenario (model structure is



Figure 16. Alternative system architectures to explore.

not discussed here).

Figure 17. (a) Graphical representation of ”Change Volume” scenario; (b) Generated task of the scenario.

Applying the task generation tool (generation concept is shown in Fig. 11) on this scenario, we extracted from

the behaviour models of participating components the message sequence diagram of operation calls involved in

the task execution. The obtained task is shown in Fig. 17.b. The task is executed periodically (with a period of

= 31 ms) and passes through two service instances: MMI Inst and RAD Inst.

”Address Lookup” scenario. Destination entry is supported by a smart ”typewriter” style interface. The

display shows the alphabet and the user selects the first letter of a city (or street). By turning a knob the

user can move from letter to letter; by pressing it the user will select the currently highlighted letter. The map

database is searched for each letter that is selected and only those letters in the on-screen alphabet are enabled

that are potential next letters in the list. We assumed that the worst-case rate of the letter selection is 1 times

per second. This user activity was emulated with a LookupStimulus trigger. The stimulus period was set to

1000 ms. The deadline for the address lookup task is 200 ms, according to real-time requirement RT2. Fig. 18.a

depicts the model of the address lookup scenario.



Figure 18. (a) Graphical representation of ”Address Lookup” scenario; (b) Generated task of the scenario.

The task generation procedure outputs the message sequence diagram of operation calls involved in the task

execution. The obtained task is shown in Fig. 18.b. The task is executed periodically (1000 ms) and passes

through two service instances: MMI Inst and NAV Inst. The task deadline is 200 ms.

”TMC Message Handling” scenario. RDS TMC is a digital traffic information enables automatic

replanning of the planned route if a traffic jam occurs ahead. TMC messages are broadcasted by radio stations

together with stereo audio sound. Traffic information messages are received by the RAD service (in a worst case

1 time per 3 seconds). RDS TMC messages are encoded; only problem location identifiers and message types

are transmitted. The map database of the NAV service contains two look-up tables that allow the receiver to

translate these identifiers into map locations and human readable RDS TMC message texts. We introduced

TMCStimulus trigger emulating the TMC messages from a radio station. The period is set to 3000 ms. The

deadline for the TMC handling task is set to 1000ms, according to the real-time requirement RT3. Fig. 19.a

depicts the model of the TMC handling scenario.

Figure 19. (a) Graphical representation of ”TMC Handling” scenario; (b) Generated task of the scenario.

The task generation procedure outputs the message sequence diagram of operation calls involved in the task

execution. The obtained task is shown in Fig. 19.b. The task is executed periodically (3000 ms) and passes

through three service instances: RAD Inst, MMI Inst and NAV Inst. The task deadline is 1000 ms. Note that



the radio only receives the TMC messages, decoding is performed on the navigation subsystem because the map

database is needed for that. The fully decoded and relevant messages are forwarded to the user.

The scenarios sketched above have an interesting property: they can occur in parallel. TMC messages must

be processed while the user changes the volume or enters a destination address at the same time. Therefore,

we combine these three scenarios in two in order to get really worst-case load on the system resources during

simulation. Consequently, a ScenarioA is defined as a combination of the SetVolume and TMCHandling scenarios,

and a ScenarioB combines the AddressLookup and TMCHandling scenarios. From the processing points of view,

both new scenarios have two tasks executing in parallel.

Scenario simulation. Following the DeSiX methodology, we simulated (with RTIE Rate Monotonic Sched-

uler) the execution of the two defined scenarios on each of the five system architectures (see Fig. 16). Before

simulation the tool performs preprocessing of the computation and communication time data. For each of the

processing node, the execution times of all operations to be executed on the node are calculated from the com-

ponent resource and node performance models (execution time =CPU claim value * processor speed). The

communication time of the operation calls made through processor boundaries, is calculated by dividing the bus

claim value of an operation on bus bandwidth value, defined in a performance model of the bus. Additionally, the

task synchronization constraints are considered during the simulation (this issue stays out of the paper scope).

The scenario simulation results in (a)predicted system behaviour, (b)resource consumption of a system for

each scenario and task best-case, average and worst-case latencies. First, we analyzed the predicted worst-case

task latencies against the real-time requirements RT1, RT2 and RT3 for each of the five architecture solutions.

Table 2 portrays the comparison of the analysis data.

Table 2. Verifying the real-time requirements against the predicted task latencies for the five architectures.

Req. ID Requirement Value Arch. A Arch. B Arch. C Arch. D Arch. E

RT1 200 ms 37.55 ms 37.55 ms 30.52 ms 9.18 ms 3.58 ms

RT2 200 ms 86.51 ms 86.51 ms 61.49 ms 63.79 ms 21.05 ms

RT3 1000 ms 375.05 ms 395.05 ms 101.71 ms 114.12 ms 46.02 ms

Performance sensitivity. Analyzing Table 2 data, we can conclude that all five architectures satisfy the

given real-time requirements. Architectures A and B can be considered as fast enough, architecture E is the

fastest solution. Because all solutions satisfy the real-time requirements it is more interesting to analyze the

sensitivity of the architectures to changes in the input event rates (arrival periode of the three stimuli). For that

we increased the data rate of the three stimuli by 5% (i.e. VolumeStimulus to 33.6 events/s, LookupStimulus to

1.05 events/s and TMCStimulus to 0.35 events/s). Then we re-simulated the adjusted scenarios and obtained

new task latencies. Table 3 represents the increase of the latency of the TMC handling task in percentage to



the normal latency per architecture. For instance, end-to-end delay of the TMC message handling task for

architecture A increases by 57.6%. This increase helped to identify the bottleneck in the Architecture A. The

processor 22 MIPS has been overloaded by the execution of IGUIControl.updateScreen operation of MMI Inst

service instance.

Table 3. Latency increase of the TMC handling task in percentage to the normal latency (performance sensitivity) per

architecture.

Task name Latency Increase Arch. A Arch. B Arch. C Arch. D Arch. E

TMC handling 57.6% 51.1% 3.2% 3.1% 0.0%

Reliability. As we mentioned in Section 4.3, the found execution timeline shows which operation is executed

on each node at every moment in time. As depicted in Fig. 7, applying given reliability models of components

and hardware IPs (processing node, bus, memory) on the timeline, we can assess the total system reliability for

the simulation time. The hardware IP reliability model contains probability of success of the IP per working

period of one hour. The software component reliability model contains data on the probability of success of each

implemented operation (probability of correct response of the operation). The system probability of success is

calculated as a product of (A) cumulative hardware IP blocks probability of success for the simulation period;

and (B) cumulative probabilities of success of the operations invoked during the simulation period. The found

reliability for each architecture is given in Table 4.

Table 4. Calculated reliability values for each architecture.

Attribute Arch. A Arch. B Arch. C Arch. D Arch. E

Reliability 96.94% 95.53% 97.93% 97.93% 98.35%

Probability of failure (100%-Rel) 3.06% 4.47% 2.07% 2.07% 1.65%

The reliability data for the component and hardware IP models has been chosen hypothetically. This data

was not measured on actual software or hardware components. However, the data is used to illustrate the method

if suitable data is available. We correlated the probability of success of an operation with the operation source

code complexity.

Interpreting the found reliability for each architecture, one may notice that Architecture B has low reliability

value. This is mainly due to the hardware topology, where the communication between processors 113 MIPS

and 11 MIPS is done via processor 22 MIPS, which imposes relatively complex data and control paths from one

processor to another. The Architecture E has high reliability because all service instances are deployed on the

single 260 MIPS processor and no physical connection is involved in the control and data paths.



System cost. The system cost attribute was calculated as a cumulative cost of the system hardware and

software components (integration cost was not included). The software component cost has been defined with

correlation to the component source code complexity. In a real-life case the cost of a third-party component

is defined by the component producer. The cost of the hardware parts has been calculated from the available

market prices divided by factor of five (for the design comparison purpose the value of the factor is not critical).

The total calculated cost for each architecture is given in Table 5.

Table 5. Calculated cost values for each architecture.

Attribute Arch. A Arch. B Arch. C Arch. D Arch. E

Cost, euro 290 305 380 335 340

The obtained cost values can be interpreted as follows. The Architecture C is most expensive because it

combines the fast 260 MIPS processor together with bus link and 22 MIPS processor. The Architecture A is

least expensive because it contains three relatively cheap (slow) processors and one bus link.

5.2. Analysis of Architecture Alternatives

The performance sensitivity, reliability and cost attributes were selected as main objectives for the design space

exploration. Using the RTIE Pareto analysis tool we obtained several two-dimensional Pareto graphs. Two of

them, sensitivity vs. cost and reliability vs. cost are depicted in Fig. 20). The principles of the graph and Pareto

curve construction are explained in Section 3.

Figure 20. Multidimensional (cost-sensitivity-reliability) exploration of the five architecture alternatives.

With respect to the cost-sensitivity trade-off, the optimal architecture alternatives are E, D and A. The

alternatives C and B are non-optimal. The choice among the three alternative architectures depends on a

weighting function (priority) for cost and sensitivity attributes. If the cost is a most important aspect - the

Architecture A should be chosen. If the performance sensitivity is a critical factor, then Architecture A is not

the best candidate.



With respect to the cost-reliability trade-off, again the optimal alternatives are E, D and A, though D does

not lie on the hypothetical ideal Pareto curve. If the cost weighting function is higher than reliability weighting

function - Architecture A can be adopted for further development. Concluding, Architectures A and E can be

considered as preferable architectures, based on this multi-dimensional Pareto analysis.

6. RELATED WORK

The multi-dimensional design space exploration is a challenging topic that has been extensively addressed in

system architecture research. Principal ideas based on evolutionary algorithms are presented in4 . Specific

approaches are used for different application domains. The “Spade” technique5 provides a methodology for

architecture exploration of heterogeneous signal processing systems. A framework based on real-time calculus6 is

proposed for design space exploration of network processor architectures. Related work on the simulation-based

design exploration of system-on-chip communication architectures is presented in7 and8 .

For a software component-based system domain, few techniques exists: micro-architecture modelling9 and

scenario-based static performance evaluation10 . The above-mentioned approaches are focused mostly on the

performance-cost-power trade-off. The research on the early assessment of the reliability quality attribute is

rarely linked with the design space exploration topic. An exception is the technique11 based on symbolic search

and multi-granular simulation. Scenario-based approaches for early assessment of component-based software

architectures are described in12 and13 . A recent method based on Markov models for reliability estimation of

component-based systems is given in14 . None of the above-mentioned approaches address the multi-objective

design space exploration for software component-based multiprocessor systems.

7. CONCLUSION

In this paper, we have presented a DeSiX design space exploration methodology for software component-based

systems on multiprocessor architectures. For validation purpose, we have exploited this technique on a case

study of a car radio navigation system. The case study revealed that the DeSiX methodology enables: (a)

quality attribute predictions at the early design phases and (b) further analysis of the proposed design solutions,

which is based on the found attributes.

The main contribution issues of the proposed methodology are: (A) It is adopted for software component-

based technologies that allow wide reuse of the software, and increases development speed. (B) Multi-objective

quality attributes can be taken into consideration at the same time. Any type of attribute can be taken for

analysis, because a component can be supplied with non-limited number of model types (resource, behaviour,

reliability, safety, cost models). (C) The methodology supports design of multiprocessor systems. It allows

mapping software components onto hardware nodes, thereby increasing design flexibility and efficiency. (D)

DeSiX enables assessment of the quality attributes based not only on the static architecture, but also on the



predicted dynamic behaviour of a complete SW/HW system. (E) It adopts the multi-objective Pareto analysis

for design space exploration, thereby helping the designer to easily cope with contradictory requirements.

The accuracy of performance attribute prediction has been previously validated by a case study on a Linux-

based MPEG-4 player20 . The prediction accuracy on the general performance proved to be higher than 90%. In

all case studies, the modelling effort required from application designer was fairly small - in the order of hours. The

most of the modelling work goes to the component developer, because he should provide the component models.

Thereby, the application developer may relatively easily model a system out of 100 components (scalability),

because necessary models are already supplied within these components. The process enables early identification

of the bottlenecks of individual alternatives and leads to selection of optimal solutions. In this paper we address

strictly performance and reliability attributes, however the proposed DeSiX process enables targeting other

important quality attributes (QAs), like security and availability. This extensibility is realized by open component

model structure, in which new model types can be easily added.

There are certain limitations of the process. To compose a real-time application out of the Robocop compo-

nents a designer can only select the components that are performance-aware - containing resource and behaviour

models. Moreover, the QAs that are system-wide, like safety and security, cannot be easily localized and modeled

at the component level. At present, we investigate feasible composition approaches for such QAs.

For future research, we plan to introduce analytical techniques for obtaining the quality attributes that would

speed up the design space exploration process. Beside this, we aim at defining a method that could allow to

find the low-level reliability data (of a software operation, processing node or bus link) in a rigorous and mature

way. Finally, we strive for a validation case-study on an industrial system, that could give indispensable points

for improvement.
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APPENDIX I. Formula for Reliability Calculation

Figure 21.

Formula for reliability calculation of: (A) all executions of an operation in a scenario; (B) all interactions in a

scenario; (C) a use-case (scenario) when it is executed once; (D) a use-case (scenario) over certain period.


