
Towards Predicting Real-Time Properties of a Component Assembly

Egor Bondarev1,2, Peter de With2, Michel Chaudron1

System Architecture and Networking1 and Video, Coding and Architectures2 groups
Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
E.Bondarev@tue.nl

Abstract

This paper addresses the prediction of timing
properties of a component-based application already
during the composition phase. At this stage, it is of
vital importance to guarantee that the timing
requirements (e.g. end-to-end deadlines) of a real-time
application that is executed on a target system will be
satisfied. This is obtained by predicting the real-time
behaviour of a component-based application. In this
paper, we extend an already existing scenario-based
approach [2] with the possibility to model the
behaviour of an application and the behavior of the
underlying components. As a result, an application
developer can reason accurately about the dynamic
resource consumption and real-time properties of a
component assembly. The modeling involves the
specification of synchronization constraints for tasks
and the simulation of application behaviour. A
concluding case-study of video encoder development
reveals that the approach is not only feasible but also
addresses yet unsolved problems of task parallel
execution and synchronization.

1. Introduction

Embedded systems are characterized by two closely
coupled properties: limited resources and real-time
constraints for execution of the applications. The
limitation of resources, such as memory size, bus
bandwidth and processing power, complicates the
satisfaction of the real-time constraints. It is evident
that these guarantees are of great importance for e.g.
multimedia devices.

For high-volume embedded appliances, such as
PDAs and mobile phones, etc, an open, component-
based framework for a middleware layer in the

software architecture has been proposed. This
framework, known as Robocop [3], was used as a
reference for specifying a follow-up ITEA research
project, called Space4U. Our research aims at
improving the Robocop architecture, by enabling the
predictions of application real-time properties.

During the design phase, an application is evaluated
to fit on a target system. For an a-priori evaluation, this
requires prediction of the resource usage of an
application. Early prediction of resource usage and
timing properties of an application at the design stage
increases system robustness and reduces cost and
problems in product development.

Component-based technology complicates the
prediction of resource usage and timing properties of
an application. In component-based systems, the actual
behaviour and resource usage are determined by an
ensemble of internally and also externally developed
components. Thus, the prediction task becomes
twofold: (1) find and express the component's extra-
functional properties, and (2) combine these properties
to predict the behaviour of the composition of the
constituent components. In the sequel, we will denote
an application also as an assembly, because it makes
use of the underlying components.

The challenge of predicting real-time properties of a
component assembly is of significant interest because
of the rapid development of component-based
technologies in the embedded systems domain. Some
approaches represent an engineering practice [7-9] to
the problem. We used [8] as a guideline for our work.
A very promising technique that allows design-time
estimations of real-time properties of component-based
systems is presented in [10]. In this technique, many
possible types of software constructions are taken into
account, like synchronous and asynchronous
communication, as well as synchronization constraints.
Recent work on the prediction of performance for

evolving architectures is described in [11]. This
approach is based on collecting the component
performance data on different platforms and
interpolating it for new components or platforms. Real-
time frameworks have been introduced in the object-
oriented development field. Methods have emerged
that enable execution of UML-like specifications,
notably Room [12] and Rhapsody [13]. The PRIMA-
UML methodology [14] applies queuing networks and
extends UML with a real-time performance model for
system performance validation. We concentrate on
similar methods, but now in the component-based
development field. The scenario-based approach
proposed in [15] involves estimating static resource
usage of a component assembly.

In contrast with this, through our scenario
simulation approach, we address a dynamic instead of
static resource usage, thereby giving more accuracy in
the prediction of the assembly behaviour. With respect
to task synchronization, we adopt the use of
synchronization constraints (precedence, critical
sections, mutexes) for further adding accuracy in the
prediction. The approach still requires little effort from
an application developer, because the introduction of
application scenarios narrows the state-space and
behaviour of an application that the developer should
model and simulate. A practical case-study revealed
that, besides proving feasibility, the important problem
of task parallel execution and synchronization comes to
the foreground. This prevents that these usually hidden
problems remain unsolved.

The paper is structured as follows. Section 2 refers
to the Robocop component model, as a fundament for
the new technique. Section 3 addresses various aspects
of timing properties of a component assembly. Section
4 discusses the workflow of the approach and gives
specifications of the required models. Section 5
clarifies the proposed approach with an encoder
application case-study. Section 6 concludes with the
pros and cons of the prediction-enabling approach.

2. Robocop component model

The proposed prediction-enabling approach is based
on the Robocop component model. The description of
the Robocop component model stays out of the scope
of this paper. The model concepts are explained in
section 2 of [5].

3. Timing and Task Synchronization

This section defines basic terms used in the paper,
e.g. timing property, task and task synchronization

constraints. There is a clear difference between the
component and application timing properties. The
component timing properties are independent from
system run-time execution and scheduling. In most of
the cases, these properties are: worst-case, mean-case
and best-case execution times per operation. The
application timing properties, instead, are closely
coupled to run-time instances, tasks and scheduling
algorithms used in the system. In the real-time
application domain, we concentrate on the following
timing properties: response time, blocking time of a
task, and the number of missed deadlines of a task.

The response time of a task is not just a sum of
execution times of the operations comprising the task.
Usually, the response time is composed of the
execution time, blocking time and pre-emption time of
the task. Therefore, for the assembly timing property,
the task synchronization and scheduling aspects should
be considered.

In literature, several definitions of tasks are used. In
our context, the task is an event-triggered sequence of
executed operations. The operations composing a
sequence may be implemented by different services.
The operations within the sequence may be called
synchronous or asynchronous. The tasks may have
synchronization constraints between them, e.g.
precedence, rendezvous and mutual exclusion. Usually,
the system resource sharing imposes the
synchronization constraints.

All these aspects have been used in this paper in a
regular way, confining to the presented definitions.

4. Scenario simulation approach

4.1. Approach overview

Our approach proposes to combine the behaviour
and resource consumption models of used components
with an application model constructed for possible
critical execution scenarios. The application scenario
model defines the static structure, internal and external
events of the application for critical scenarios. Critical
scenarios are the scenarios that may introduce CPU or
memory overload. The resulting set of models serves as
an input for virtual scheduling (simulation). The
simulation output data shows execution behaviour of
the assembly tasks and timing properties of those tasks,
i.e. predicted execution timeline, latency and resource
utilization of each task.

Summarizing, the key features of our approach are:
a) Predictions on timing properties are made by

simulation at an early stage of development.

b) It avoids combinatorial complexity of full
state-space analysis by usage of scenarios.

c) It takes task synchronization and scheduling
aspects into account.

The following section describes how the approach
should be implemented.

4.2. Workflow of the approach

The main objective of an assembly developer is,
given a set of available components and requirements
for an assembly, to embed the components in the
assembly satisfying the given requirements.

In the domain of real-time application, a developer
needs to focus on satisfying extra-functional
requirements like response time, or busload (Figure 1).

Application real-time
requirements

Real-time aware
components

Input

Application satisfying
real-time

requirements

Output
Design

workflow

Figure 1. Conceptual view on the prediction-

enabling composition workflow.

The workflow works is based on two assumptions:
a) Resource usage property and behaviour of the

constituent components are specified and
available in the used component models.

b) An application developer is able to find out
critical scenarios of the application.

The main steps of the workflow are depicted in
Figure 2. The remainder of this section defines the
consecutive steps of the workflow.

�
��
�
��
��
�
�	

�

Figure 2. Main steps in the predictable RT

composition workflow.

A developer selects and composes a set of available
components into an application. According to the
above assumption (1), selected components should be
real-time aware, e.g. have both a resource model and a
behaviour model. These two models are used to
accompany an application scenario model that is
constructed in the next step and, thus, complete the
mosaic of the application behaviour. The description of
the models is given in Section 4.3.

Construction of application scenario model

For each critical or commonly used scenario, a
developer constructs an application scenario model
(see Figure 2). The application scenario model consists
of two parts: (a) description of service instances and
bindings between them, particular for the selected
scenario, and (b) description of the application-level
events and active threads that trigger execution of
operations of the service instances.

Compilation of models

The application scenario, component resource and
component behaviour models are jointly compiled. The
goal of the compilation is to reconstruct (generate) the
tasks running in the application. Prior to compilation,
the task-related data is spread over different models.
For instance, the task periodicity may be specified in an
application scenario model, whereas the operation call
sequence comprising the task is specified in relevant
component behaviour models. The compiler
reconstructs all necessary properties of the tasks, like
deadline, period, priority and operation call sequence.

Simulation of tasks execution

An application developer applies a scheduler to the
reconstructed task pool, simulating the execution of
defined scenario. The scheduling algorithm may vary
depending on the algorithm of the operating system, on
which the application is supposed to execute. The
scheduler should implement prevention of unbounded
priority inversion, because the models define various
types of synchronization constraints. Resulting data
from the scheduler is the task execution timeline. This
timeline is a subject for schedulability and performance
analysis.

Schedulability analysis

The analysis of the task execution timeline helps to
reason about application timing properties like
response time, latency of critical tasks, overall
schedulability and processor utilization bounds. Many
other possible application properties can be derived:

rate of missed deadlines, blocking time, worst and best-
case response time per task.

This step results in predicted real-time and
performance properties of the designed application.

Checking properties against requirements

The predicted timing properties are checked against
the real-time requirements of an application (see Figure
2). For example, worst-case response time of a critical
task is verified with its deadline specified in the
requirements. If any of the requirements are not met, a
developer optimizes the composition and repeats the
workflow.

4.3. Model description

The purpose of this section is to specify the models
introduced in the previous section. It is emphasized
here that the models are not a goal by themselves, but
are required for obtaining the resource consumption
and timing properties.

According to Figure 4, we propose to model
application scenarios. This allows decomposing each
type of application behavior into a separate simple
scenario model. Thus, we can reduce the complexity of
the complete behavioral model of the application and
partly avoid exploration of all application states.

The following sub-sections specify the above-
mentioned models in detail.

Component resource model

The component resource model (RM) is one of the
models of the Robocop component model. RM
specifies the predicted resource consumption for all the
operations impl_opr implemented by services of an
executable component (for certain platform). Resources
(r) can be memory, CPU, etc. The predicted resource
consumption is specified as a (claim, release) tuple for
non-processing resources, like memory. For processing
resources, like the CPU, the consumption is specified
as a single claim.

m = RM,

 where m is a Resource Model and
 RM is a set of rm (resource usage of an operation).

rm = (impl_opr, resource, consumption),
 for operation impl_opr.

resource = r � {memory, cpu, bus, …}.
consumption = claim,

 in case resource is cpu.
consumption = (claim, release),

 in case resource is memory.
consumption = (claim, time),
 in case resource is bus.

A component developer defines the resource
consumption properties of an operation by worst-case
analysis. These properties are calculated only for the
operation body itself, excluding resource consumption
properties of called operations. This approach allows
calculating resource consumption of any sequences of
operation calls. In this paper, we do not address
platform and parametric variations of the operation
resource consumption. The resource model should be
specified for a particular reference platform.

Component behaviour model

The component behaviour model (BM) also belongs
to the Robocop component model. BM specifies the
behaviour of all operations impl_opr implemented by
services of an executable component. A semi-formal
specification of the model is as follows.

m = BM,

 where m is a Behaviour Model and
 BM is a set of bm (behaviour of an operation).

bm = (impl_opr, mutexed, behaviour, T),
 where impl_opr is the implemented operation and

behaviour is the operation behaviour description,
T is a set of t (task triggers the operation is
associated with),

 mutexed shows if the operation is mutexed.
mutexed = � {true, false}.
behaviour = (called_opr1, called_opr2, …called_oprn, CS),

where called_opr1, …called_oprn is a sequence of
called operations and
CS is a set of cs (critical sections).

called_opr = (opr, nmb_iterations, calling_type),
 where opr is the called operation and

nmb_iterations - number of times the operation is
called,

 calling_type � {synchronous, asynchronous}.
cs = (called_opr1, called_opr2, …called_oprn).
t = (periodicity, param, PRECED),

where periodicity � {periodic, sporadic,
aperiodic},
PRECED is a set of preced (preceding task
triggers),

 param includes various parameters of t.
param = (period, interarrival_time, priority, deadline,

offset, jitter).
preced = (t, ratio),

where t is a task trigger that precedes the specified
task trigger.

ratio = nmb_jobs_of_current_task /
nmb_jobs_of_preceding_task.

Firstly, for each operation impl_opr implemented by

an executable component, a component developer
defines its mutual exclusion property. If an operation is
mutexed, at most one thread can enter the operation at
the same time. Secondly, operation behaviour

describes a sequence of operation calls to other
interfaces made inside the implemented operation. For
example in Figure 5, the implemented operation
Decoder.decode() has a behaviour described by the
following call sequence: IGetElement.getFrame(),
IStoreElement.storeFrame(). The IGetElement and
IStoreElement are the interfaces provided by
ReadBuffer and WriteBuffer services correspondingly.

Figure 3. Sequence of operation calls

(behaviour) of decode() operation.

For each called operation called_opr in the
sequence, the number of iterations nmb_iterations and
calling type calling_type are specified. Additionally, a
set of critical sections CS can be specified if necessary
in behaviour. Critical section cs points out the
operation of which the execution cannot be pre-empted.
Please note that each called_opr must belong to one of
the required interfaces for the service.

Finally, a component developer must define the
operation autonomous behaviour T. We consider that
an operation has autonomous behaviour if there is at
least one task trigger t implemented by the operation.
One of the examples of the task trigger is an iterative
thread, triggered periodically by a timer. In the decoder
example, the decode() operation can implement an
iterative thread, which is triggered by the system timer
each 20 ms. Thus, the whole calling sequence repeats
each 20 ms. In the model, the task trigger properties
can be specified, including periodicity, period,
deadline, offset, precedence constraints preced, etc.

Concluding, these two models describe component
resource consumption and behaviour properties
independent of the application context where the
component is going to be used.

Application scenario model

The application scenario model (SM) specifies
application structure and behaviour for a critical or
commonly used execution scenario. Several SMs can
be built for an application, depending on a number of
interesting scenarios. An application developer is in
charge of the scenario models construction. The semi-
formal structure of the model is presented below.

SM = (appl, structure, E, T, depend),

where E is a set of e (event coming from outside of
the appl),
T is a set of t (task trigger the appl implements),
depend is a set of components used in the appl.

structure = (SI, B),
where SI is a set of si (service instances) and

 B is a set of b (bindings).
b = (from, from port, to, to port).
from, to = service instance.
from port, to port = port name (named interface).
e and t = (opr, periodicity, param, PRECED),

where opr is an operation triggered by the e or t,
 periodicity � {periodic, sporadic, aperiodic},
 PRECED is a set of preced (preceding e or t),
 param is number of parameters of e or t.

param = (period, interarrival_time, priority, deadline,
offset, jitter).
preced = (e or t, ratio),

where e or t is event or trigger which precedes the
current one.

ratio = nmb_current_events/nmb_preceding_events.

Firstly, an application developer specifies an

application structure for a scenario. The structure is
represented by a tuple containing SI (set of service
instances si) and B (set of bindings between the si). A
binding includes information about the bound service
instances from, and to, and in/out ports of the instances
from port, to port. In Figure 6, dashed lines represent
the bindings.

Figure 4. Example of application structure.

Secondly, the model defines the components

(depend) used in the application. This data links the
scenario model with the behaviour and resource
models of the corresponding components.

Finally, the application scenario model specifies sets
E and T of events e and in-application task triggers t,
respectively. We define an as event any influence
coming from outside to an application that changes the
current application state. Hardware interrupt, timer or
signal from an external sensor can trigger the event.

Normally, this influence is expressed as a call of one of
the operations of the application component.

Conceptually, an in-application task trigger is also
an event, but it comes from inside the application. In
other words, this task trigger is implemented by the
application. Please recall that we also have a task
trigger notion in the component behavior model. That
task trigger differs by being implemented inside a
component. The two types of task triggers are
separated into different models, because an in-
component task trigger must be specified by a
component developer and an in-application task trigger
must be specified by an application developer.

The application task trigger calls one of the
operations of the application components, thereby
starting the task action sequence. Therefore, the e and t
must be associated with the operation called first (opr).
In Figure 7, an application periodic task trigger calls
decode() operation each 40 ms. Thus, in the scenario
model the trigger shall be associated with the operation.

For each event e as well the in-application task
trigger t, its periodicity, parameters param and
precedence constraints preced are specified.

Figure 5. Task triggered by in-application

trigger.

When the scenario models are ready, an application
developer proceeds to the simulation phase.

4.4. Model Compilation and Schedulability

In the Space4U project, we have developed a
Robocop Integration Environment (RIE) tool that does
compilation of the above-mentioned models, simulation
of an application scenario and visualization of the
simulation data.

In the simulation and schedulability analysis phase,
an application developer brings together the
application scenario model and combined behaviour-
resource models of the components deployed in the
application. At this stage this stack of models can be
compiled by RIE. The conceptual goal of the
compilation is to identify and reconstruct a set of tasks
that the application executes in a particular scenario.

The task-set reconstruction uses only the data from
the three above-mentioned models. These models

contain all events; in-application and in-component
task triggers, as well as operation call sequences that
define a flow of control for the tasks.

For the decoder example, the task reconstruction
works as follows: the related behaviour model specifies
the operation call sequence of the operation decode():
getFrame(), storeFrame() (see Figure 5).
Afterwards, the compiler gathers from related behavior
models the behaviour of these two operations. The
operation getFrame() calls one operation belonging to
other interfaces: ILogData.logEvent()(see Figure 8).

Figure 6. getFrame() and storeFrame()
behaviour.

If an operation has an empty operation call sequence
(does not call operations belonging to other interfaces),
it is considered as a leaf and the task generation
proceeds to the next branch. Let us assume that
operation ILogData.logEvent() is such a leaf. The
next operation storeFrame() then also calls this leaf
operation: ILogData.logEvent() (see Figure 8). Thus,
the complete reconstructed sequence of the operations
executed in the task is as shown in Figure 9.

Figure 7. Task generated from the models.

A resource consumption property of each operation

in this sequence is specified in the claim primitive in
the related component resource model (see Section
6.1). Knowing this data, we can calculate total resource
consumption of the task. For example, the CPU time
used by the task (execution time) is the sum of CPU
times used by the operations composing the task. In
Figure 9, the total execution time of the task amounts
to: 8ms + 5ms + 2ms + 5ms + 2ms = 22ms. The other
task parameters (period, offset, and deadline) and

precedence are obtained from corresponding task
trigger properties specified in the models.

Synchronization constraints for each task are also
extracted from the models. The task precedence has
been already mentioned. Mutexed and critical section
cs, which are properties of an operation, as well as a
task precedence preced specified in the component
behavior model, all define synchronization constraints
of tasks. If a mutexed operation of the same service
instance is used by two different tasks, then only one of
the tasks can execute the operation at the same time.

An execution of the reconstructed tasks of the
scenario is simulated by a virtual scheduler. During the
simulation, these synchronization constraints are taken
into account.

The simulation results are represented as a task
execution timeline (see Figure 10).

Figure 8. Task timeline execution of scenario

The schedulability analysis of the simulation data

gives us the timing properties of an application. The
response time, blocking time, number of missed
deadlines can be found for each task. Beside this, the
processor utilization bound can be analyzed per
application. The predicted properties can be validated
with respect to the application requirements.

5. Video Encoder Case-study

The objectives of the video encoder case-study are
to show practical aspects of the approach utilization
and give further clarification. The example starts with
requirements, goes through the prediction-enabling
composition workflow and ends with predicted timing
properties of the application.

5.1. Requirements

Taking into account that we do not focus on
functional requirements, the required functionality can
be expressed in one sentence: the application shall
encode on-the-fly the audio and video signals in
MPEG-4 format and subsequently multiplex the
compressed signals into one stream (REQ1).

The extra-functional requirement for the TV-like
application: the number of skipped frames during the
encoding on-the-fly should be NULL (REQ2). This
implies that we do not allow missed deadlines for audio
and video encoding tasks (real-time application).

5.2. Component selection

After the requirements elicitation, the process of the
component-based application development continues
with component selection. Because our application has
a real-time nature, we should select only real-time
aware components (resource and behaviour models in
their distribution package).

We selected two real-time aware components that
bring the required functionality: MPEG4_Encoder and
Data_Broker having three service each as indicated in
Figure 9. Each service has provides and requires
interfaces. For instance, the VideoEnc service provides
IVideoEnc interface and requires IBufferAccess and
IMux interfaces. The IVideoEnc interface encapsulates
the VideoEncode() operation. All public operations are
also represented in Figure 9.

������
���

��������
���

�����
���
����

��������

�����
���
����

	
������ ������������

������������

������������

�
��������

� ����������

������

�! �����������

�����

�"���������

�����������

�
����

#
�
�

$��%���

#
�
�

�
��
����

&����
���

&���

&����
���

& ��� &! ���� &��		������$$

&��		������$$ &��		������$$

&��		������$$ &��� &��		������$$ &��� &��		������$$

Figure 9. Selected components with services,

interfaces and operations.

The corresponding resource and behaviour models

(see Figure 10) are constructed according to the rules
defined in Section 4. The behaviour (resource) model
specifies behavioral (resource usage) aspects of all
public operations of the component. Note that there are
no task-triggering operations specified in services of
both components (fields for task triggers T are empty).
It means that all operations are passive (have no
autonomous behaviour) and should be controlled by
application-level events and task triggers.

������
�����������
���

'
��
����� �$
������
���(

����
���
����)�����������*�'�+)�������	�*�,��$

����
���
����)�����������*�'�+)�������	�*
��$

�����������)�����������*�'�+)�������	�* -��$

�����������)�����������*�'�+)�������	�* .��$

�����������)�����������*�'�+)�������	�* .��$

'
��
����� �$
������
���(

 ����������)�����������*�'�+)�������	�*����$

! �����������)�����������*�'�+)�������	�*����$

"���������)�����������*�'�+)�������	�* /��$

$���������)�����������*�'�+)�������	�* /��$

'
��
�������0�%�
����
���(

����
���
����

����	������*�	��$�

�������������
�����&��		������$$1"���������)

�������������	�������������*.)
��������������������*�$2��0

��������&���1�����������)

�������������	�������������*.)

��������������������*�$2��0

���
��

����
���
����

����	������*�	��$�

�������������

�����&��		������$$1"���������)

�������������	�������������*.)

��������������������*�$2��0

��������&���1�����������)

�������������	�������������*.)

��������������������*�$2��0

���
��

�����������

����	������*�	��$�

�������������

�����&��		������$$1����������)

�������������	�������������*.)

��������������������*�$2��0

���
��

�����������

����	������*�	��$�

���������������
��

���
��

�����������

����	������*�	��$�

���������������
��

���
��

'
��
�������0�%�
����
���(

 ����������

����	������*�	��$�

�������������

����&��		������$$1����������)

�������������	�������������*.)

��������������������*�$2��0

���
��

! �����������

����	������*�	��$�

�������������

����&��		������$$1"���������)

�������������	�������������*.)

��������������������*�$2��0

���
��

"���������

����	������*�����

���������������
��

���
��

����������

����	������*�����

���������������
��

���
��

Figure 10. Behaviour and resource models of

the components.

5.3. Composing the encoder application

The design (composition) phase, which is the first
stage of the workflow, consists of three steps: service
instantiation, service instances binding and design of
application level events and task triggers.

The service instantiation is basically a process of
defining a structure of an application depending on
required functionality. Our encoder should read,
encode AV streams and multiplex them in one MPEG-
4 stream. Finally, this stream should be stored.
Therefore, the encoder should have at least the
following service instances: audio-, video- readers,
audio-, video- encoders, multiplexer, and writer. Data
communication between the instances can be realized
by a set of buffers. This structure (service instantiation)
is depicted in Figure 11. As can be noticed, the Reader
service is instantiated twice (aReader, vReader) and the
Buffer service has three instances (vBuffer, aBuffer,
mBuffer).

The second step is binding the service instances.
Requires interfaces are connected to provides
interfaces of the same type, thus defining data and
control flows in the application. Figure 11 depicts the
service instance bindings by the connecting arrows.

Figure 11. Binding the encoder service

instances.
In the third step, a developer identifies necessary

application-level events and task triggers. In
component-based systems, an application-level task
trigger can be implemented in the code of application
as a separate thread that wakes up periodically (by
timer signals) and invokes one of the component
operations. In its turn, an event is usually implied by
hardware platforms (i.e. interrupts). A developer needs
not to implement events, but should take them into
account during the design phase.

The services composing the encoder application
have no autonomous operations with task triggers
inside (all services are passive). In order to make the
application alive, we designed six task triggers
executing on the application level (see Figure 12). Each
of the task triggers periodically invokes one of the
operations, thereby creating a separate thread of
control. For example, Trigger1 invokes the
IRead.readFrame() operation of the vReader service
instance. This operation reads one video frame from a
file and stores the frame in vBuffer. All triggers are
designed to fire with periodicity of 40 ms, since this is
common video streaming rate. We defined the
deadlines for the triggered tasks to be equal to their
periods (40 ms). We specified no precedence
constraints for the tasks. Having this information we
can construct an application scenario model.

�����3

����
�

��%��

% ������(� �����

� ������(� �����

%��		���(���		��

���		���(���		��

%����(�����
���

�����(�����
���

����(������������ ���		���(���		�� 4������(�! �����

&��		������$$

&��		������$$

& ���

&��		������$$

&��		������$$

&��		������$$

&��		������$$

& ��� &����
���

&���

&����
���

&! ����

&��		������$$

&��		������$$ &���

&���

&��		������$$

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

6�$�

���""���.

6�$�

���""���7

6�$�

���""����

6�$�

���""���-

6�$�

���""���/

6�$�

���""���8

Figure 12. Application level task triggers.

5.4. Constructing a scenario model

The construction of a scenario model starts with
identification of relevant scenarios. The relevant
scenario can be either a common execution scenario or
a critical scenario. In the encoder case, the common
execution scenario (e.g. encoding mode) is relevant to
consider, because it implies high resource usage and
correlates with REQ2 (see Section 5.1).

The application scenario model (defined in Section
4.3) requires data about service instances, bindings,
events and task triggers for the selected scenario. This
data is already known from the above-mentioned
design steps, so that we only need to represent this data
in the scenario model format. A major part of this
scenario model is depicted by Figure 13.

Figure 13. Application scenario model for

encoding scenario.

After all related data is inserted in the application

scenario model; we give a flow to the RIE for the
models compilation and simulation of the compiled
tasks.

5.5. Model compilation

The RIE compiler reconstructs the tasks in the
application scenario (reconstruction process is
explained in Section 4.4). Here we graphically
represent the result of the task reconstruction (see
Figure 14). The tasks are circular lines with arrows
showing the control flow directions. For example,
video encoding task is triggered by Trigger3 who calls
operation VideoEncode(). This operation first calls
getFrame() operation of vBuffer, then encodes the
received frame and finally calls putVFrame() operation
of Mux service instance. This task repeats each 40 ms.

The call sequence diagram for the task is depicted in
Figure 15.

% ������(� �����

� ������(� �����

%��		���(���		��

���		���(���		��

%����(�����
���

�����(�����
���

����(������������ ���		���(���		�� 4������(�! �����

&��		������$$

&��		������$$

& ���

&��		������$$

&��		������$$

&��		������$$

&��		������$$

& ��� &����
���

&���

&����
���

&! ����

&��		������$$

&��		������$$ &���

&���

&��		������$$

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

6�$��&��*�-

Figure 14. Reconstructed tasks after models

compilation.

Figure 15. Video encoding task.

5.6. Simulation of tasks execution

An execution of the reconstructed tasks can be
further simulated by the RIE scheduler. The current
algorithm used in the RIE scheduler is rate monotonic
with bounded priority inversion. The virtual scheduling
of the encoder tasks results in the execution timeline
depicted in Figure 16. The three bold vertical lines
show: completion, deadlines and triggering moments of
each task instance.

Figure 16. Part of the task execution timeline

for encoder application.

5.7. Schedulability analysis

The schedulability analysis leads to the
requirements validation. Our extra-functional REQ2
demands no missing deadlines of the audio and video

encoding tasks (see Section 5.1). According to the
generated tasks execution timeline (Figure 16), video
encoding (TaskID = 3) and audio encoding (TaskID =
4) tasks meet all deadlines for a simulation period of 10
seconds. Note that this is only true under the condition
that the assigned CPU budget is 100 %.

This step ends with the conclusion that the designed
application meets its real-time requirements and we can
now proceed to the implementation phase.

6. Conclusions

We have extended the scenario-based approach for
predicting resource usage of component-based systems
in [2] with the specifications of task synchronization,
component behaviour model and application scenario
model. This allows simulation of the real-time task
execution per application scenario and handling of
synchronization constraints. Based on the simulation
results, a developer can derive the behaviour and
dynamic resource consumption of an application per
scenario. Afterwards, a developer uses this data for
prediction of the real-time properties of an application.
The method was validated through the Robocop
Integration Environment tool that automates complex
operations and guides a developer through the
composition process.

The proposed prediction approach has a number of
benefits. Firstly, it is general and can be applied in
different application domains and for various
architectural styles. For example, it works for
‘blackboard’ and ‘client-server’ architectures.
Secondly, the approach allows prediction of
dynamically changing resource usage. Thirdly, the
approach is more accurate by incorporating task
synchronization constraints and distinguishing
synchronous and asynchronous communication.
Fourthly, the method is compositional, meaning that
the resource-usage data of an application can be based
on data from its constituent components. Finally, the
use of scenarios decreases modeling complexity.

The proposal also has some assumptions and
limitations that need further study. Firstly, it assumes
that resource usage is constant per operation, whereas it
actually may depend on parameter values passed to
operations and/or application state. Secondly, the
method is restricted to the Robocop component model,
which has a notion of ‘requires interfaces’, whereas
other architectures such as COM [4], do not have this
notion. Finally, it provides no techniques for specifying
the component resource model for different platforms.
Extending the relatively simple case in this paper, we

are currently validating the approach on more complex
MPEG-4 codec software.

References

[1] Ivica Crnkovic and Magnus Larsson. Building Reliable
Component-based Software Systems, Artech House, 2002,
ISBN 1-580-53327-2
[2] Johan Muskens and Michel Chaudron. Prediction of Run-
time Consumption in Multi-task Component-Based Systems.
In Proceedings of 7th ICSE Symposium on Component Based
Software Engineering. May, 2004.
[3] Robocop public homepage. [http://www.extra.research.
philips.com/euprojects/robocop/]
[4] D. Box. Essential COM. Object Technology Series.
Addison-Wesley, 1997.
[5] Egor Bondarev et al. Predicting Real-Time Properties of
Component Assemblies: a Scenario Simulation Approach. In
Proceedings of 30th EuroMicro Conference on Component
Based Software Engineering. September, 2004.
[6] R. van Ommering et al., The Koala component model for
consumer electronics software. IEEE Computer, 33 (3): 78-
85, Mar. 2002.
[7] I. Crnkovic, et al., Anatomy of a research project in
predictable assembly. In 5th ICSE Workshop on Component
Based Software Engineering. ACM, May, 2002.
[8] Kurt C. Wallnau. Volume III: A Technology for
Predictable Assembly from Certifiable Components. April
2003, CMU/ESI-2003-TR-009
[9] Scott A. Hissam, et al., Packaging Predictable Assembly
with Prediction-Enabled Component Technology. November
2001, CMU/ESI-2001-TR-024
[10] Scott Hissam et al., Predictable Assembly of Substation
Automation Systems: An Experiment Report. September
2002, CMU/SEI 2002-TR-031
[11] A. V. Fioukov et al., Estimation of static memory
consumption for systems built from source code components.
In Proc. 28th EUROMICRO conference, Component-Based
Software Engineering Track. IEEE Computer Society Press,
Sept. 2002.
[12] B. Selic, et al. Real-Time Object-Oriented Modeling,
Wiley, 1995, ISBN 0471599174.
[13] B.P. Douglass, Doing Hard Time. Developping Real-
time Systems with UML, Objects, Frameworks and Patterns,
Addison Wesley 1999, ISBN 0-201-49837-5.
[14] Vittorio Cortellessa, Rafaella Mirandola. PRIAM-UML:
a performance validation incremental methodology on early
UML diagrams. Elsevier Science B.V., 02/2002.
[15] M. de Jonge, J. Muskens and M. Chaudron. Scenario-
based prediction of run-time resource consumption in
component-based systems. In Proceedings of 6th ICSE
Workshop on CBSE. ACM. June, 2003.

