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Abstract 
 

This paper addresses the prediction of timing 
properties of a component-based application already 
during the composition phase. At this stage, it is of 
vital importance to guarantee that the timing 
requirements (e.g. end-to-end deadlines) of a real-time 
application that is executed on a target system will be 
satisfied. This is obtained by predicting the real-time 
behaviour of a component-based application. In this 
paper, we extend an already existing scenario-based 
approach [2] with the possibility to model the 
behaviour of an application and the behavior of the 
underlying components. As a result, an application 
developer can reason accurately about the dynamic 
resource consumption and real-time properties of a 
component assembly. The modeling involves the 
specification of synchronization constraints for tasks 
and the simulation of application behaviour. A 
concluding case-study of video encoder development 
reveals that the approach is not only feasible but also 
addresses yet unsolved problems of task parallel 
execution and synchronization. 
 
1. Introduction 
 

Embedded systems are characterized by two closely 
coupled properties: limited resources and real-time 
constraints for execution of the applications. The 
limitation of resources, such as memory size, bus 
bandwidth and processing power, complicates the 
satisfaction of the real-time constraints. It is evident 
that these guarantees are of great importance for e.g. 
multimedia devices. 

For high-volume embedded appliances, such as 
PDAs and mobile phones, etc, an open, component-
based framework for a middleware layer in the 

software architecture has been proposed. This 
framework, known as Robocop [3], was used as a 
reference for specifying a follow-up ITEA research 
project, called Space4U. Our research aims at 
improving the Robocop architecture, by enabling the 
predictions of application real-time properties. 

During the design phase, an application is evaluated 
to fit on a target system. For an a-priori evaluation, this 
requires prediction of the resource usage of an 
application. Early prediction of resource usage and 
timing properties of an application at the design stage 
increases system robustness and reduces cost and 
problems in product development. 

Component-based technology complicates the 
prediction of resource usage and timing properties of 
an application. In component-based systems, the actual 
behaviour and resource usage are determined by an 
ensemble of internally and also externally developed 
components. Thus, the prediction task becomes 
twofold: (1) find and express the component's extra-
functional properties, and (2) combine these properties 
to predict the behaviour of the composition of the 
constituent components. In the sequel, we will denote 
an application also as an assembly, because it makes 
use of the underlying components. 

The challenge of predicting real-time properties of a 
component assembly is of significant interest because 
of the rapid development of component-based 
technologies in the embedded systems domain. Some 
approaches represent an engineering practice [7-9] to 
the problem. We used [8] as a guideline for our work. 
A very promising technique that allows design-time 
estimations of real-time properties of component-based 
systems is presented in [10]. In this technique, many 
possible types of software constructions are taken into 
account, like synchronous and asynchronous 
communication, as well as synchronization constraints. 
Recent work on the prediction of performance for 



evolving architectures is described in [11]. This 
approach is based on collecting the component 
performance data on different platforms and 
interpolating it for new components or platforms. Real-
time frameworks have been introduced in the object-
oriented development field. Methods have emerged 
that enable execution of UML-like specifications, 
notably Room [12] and Rhapsody [13]. The PRIMA-
UML methodology [14] applies queuing networks and 
extends UML with a real-time performance model for 
system performance validation. We concentrate on 
similar methods, but now in the component-based 
development field. The scenario-based approach 
proposed in [15] involves estimating static resource 
usage of a component assembly. 

In contrast with this, through our scenario 
simulation approach, we address a dynamic instead of 
static resource usage, thereby giving more accuracy in 
the prediction of the assembly behaviour. With respect 
to task synchronization, we adopt the use of 
synchronization constraints (precedence, critical 
sections, mutexes) for further adding accuracy in the 
prediction. The approach still requires little effort from 
an application developer, because the introduction of 
application scenarios narrows the state-space and 
behaviour of an application that the developer should 
model and simulate. A practical case-study revealed 
that, besides proving feasibility, the important problem 
of task parallel execution and synchronization comes to 
the foreground. This prevents that these usually hidden 
problems remain unsolved.  

The paper is structured as follows. Section 2 refers 
to the Robocop component model, as a fundament for 
the new technique. Section 3 addresses various aspects 
of timing properties of a component assembly. Section 
4 discusses the workflow of the approach and gives 
specifications of the required models. Section 5 
clarifies the proposed approach with an encoder 
application case-study. Section 6 concludes with the 
pros and cons of the prediction-enabling approach. 
 
2. Robocop component model 
 

The proposed prediction-enabling approach is based 
on the Robocop component model.  The description of 
the Robocop component model stays out of the scope 
of this paper. The model concepts are explained in 
section 2 of [5]. 
 
3. Timing and Task Synchronization 
 

This section defines basic terms used in the paper, 
e.g. timing property, task and task synchronization 

constraints. There is a clear difference between the 
component and application timing properties. The 
component timing properties are independent from 
system run-time execution and scheduling. In most of 
the cases, these properties are: worst-case, mean-case 
and best-case execution times per operation. The 
application timing properties, instead, are closely 
coupled to run-time instances, tasks and scheduling 
algorithms used in the system. In the real-time 
application domain, we concentrate on the following 
timing properties: response time, blocking time of a 
task, and the number of missed deadlines of a task. 

The response time of a task is not just a sum of 
execution times of the operations comprising the task. 
Usually, the response time is composed of the 
execution time, blocking time and pre-emption time of 
the task. Therefore, for the assembly timing property, 
the task synchronization and scheduling aspects should 
be considered. 

In literature, several definitions of tasks are used. In 
our context, the task is an event-triggered sequence of 
executed operations. The operations composing a 
sequence may be implemented by different services. 
The operations within the sequence may be called 
synchronous or asynchronous. The tasks may have 
synchronization constraints between them, e.g. 
precedence, rendezvous and mutual exclusion. Usually, 
the system resource sharing imposes the 
synchronization constraints. 

All these aspects have been used in this paper in a 
regular way, confining to the presented definitions. 
 
4. Scenario simulation approach 
 
4.1. Approach overview 
 

Our approach proposes to combine the behaviour 
and resource consumption models of used components 
with an application model constructed for possible 
critical execution scenarios. The application scenario 
model defines the static structure, internal and external 
events of the application for critical scenarios. Critical 
scenarios are the scenarios that may introduce CPU or 
memory overload. The resulting set of models serves as 
an input for virtual scheduling (simulation). The 
simulation output data shows execution behaviour of 
the assembly tasks and timing properties of those tasks, 
i.e. predicted execution timeline, latency and resource 
utilization of each task. 

Summarizing, the key features of our approach are: 
a) Predictions on timing properties are made by 

simulation at an early stage of development. 



b) It avoids combinatorial complexity of full 
state-space analysis by usage of scenarios. 

c) It takes task synchronization and scheduling 
aspects into account. 

The following section describes how the approach 
should be implemented. 
 
4.2. Workflow of the approach 
 

The main objective of an assembly developer is, 
given a set of available components and requirements 
for an assembly, to embed the components in the 
assembly satisfying the given requirements.  

In the domain of real-time application, a developer 
needs to focus on satisfying extra-functional 
requirements like response time, or busload (Figure 1). 
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Figure 1. Conceptual view on the prediction-

enabling composition workflow. 
 

The workflow works is based on two assumptions: 
a) Resource usage property and behaviour of the 

constituent components are specified and 
available in the used component models. 

b) An application developer is able to find out 
critical scenarios of the application. 

The main steps of the workflow are depicted in 
Figure 2. The remainder of this section defines the 
consecutive steps of the workflow. 
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Figure 2. Main steps in the predictable RT 

composition workflow. 

A developer selects and composes a set of available 
components into an application. According to the 
above assumption (1), selected components should be 
real-time aware, e.g. have both a resource model and a 
behaviour model.  These two models are used to 
accompany an application scenario model that is 
constructed in the next step and, thus, complete the 
mosaic of the application behaviour. The description of 
the models is given in Section 4.3. 

 
Construction of application scenario model 

For each critical or commonly used scenario, a 
developer constructs an application scenario model 
(see Figure 2). The application scenario model consists 
of two parts: (a) description of service instances and 
bindings between them, particular for the selected 
scenario, and (b) description of the application-level 
events and active threads that trigger execution of 
operations of the service instances. 

 
Compilation of models 

The application scenario, component resource and 
component behaviour models are jointly compiled. The 
goal of the compilation is to reconstruct (generate) the 
tasks running in the application. Prior to compilation, 
the task-related data is spread over different models. 
For instance, the task periodicity may be specified in an 
application scenario model, whereas the operation call 
sequence comprising the task is specified in relevant 
component behaviour models. The compiler 
reconstructs all necessary properties of the tasks, like 
deadline, period, priority and operation call sequence. 

 
Simulation of tasks execution 

An application developer applies a scheduler to the 
reconstructed task pool, simulating the execution of 
defined scenario. The scheduling algorithm may vary 
depending on the algorithm of the operating system, on 
which the application is supposed to execute. The 
scheduler should implement prevention of unbounded 
priority inversion, because the models define various 
types of synchronization constraints. Resulting data 
from the scheduler is the task execution timeline. This 
timeline is a subject for schedulability and performance 
analysis. 

 
Schedulability analysis 

The analysis of the task execution timeline helps to 
reason about application timing properties like 
response time, latency of critical tasks, overall 
schedulability and processor utilization bounds. Many 
other possible application properties can be derived: 



rate of missed deadlines, blocking time, worst and best-
case response time per task.  

This step results in predicted real-time and 
performance properties of the designed application. 

 
Checking properties against requirements 

The predicted timing properties are checked against 
the real-time requirements of an application (see Figure 
2). For example, worst-case response time of a critical 
task is verified with its deadline specified in the 
requirements. If any of the requirements are not met, a 
developer optimizes the composition and repeats the 
workflow. 
 
4.3. Model description 
 

The purpose of this section is to specify the models 
introduced in the previous section. It is emphasized 
here that the models are not a goal by themselves, but 
are required for obtaining the resource consumption 
and timing properties. 

According to Figure 4, we propose to model 
application scenarios. This allows decomposing each 
type of application behavior into a separate simple 
scenario model. Thus, we can reduce the complexity of 
the complete behavioral model of the application and 
partly avoid exploration of all application states. 

The following sub-sections specify the above-
mentioned models in detail. 
 
Component resource model 

The component resource model (RM) is one of the 
models of the Robocop component model. RM 
specifies the predicted resource consumption for all the 
operations impl_opr implemented by services of an 
executable component (for certain platform). Resources 
(r) can be memory, CPU, etc. The predicted resource 
consumption is specified as a (claim, release) tuple for 
non-processing resources, like memory. For processing 
resources, like the CPU, the consumption is specified 
as a single claim. 

 
m = RM, 

 where m is a Resource Model and 
 RM is a set of rm (resource usage of an operation). 

rm = (impl_opr, resource, consumption), 
 for operation impl_opr. 

resource = r � {memory, cpu, bus, …}. 
consumption = claim, 

  in case resource is cpu. 
consumption = (claim, release), 

  in case resource is memory. 
consumption = (claim, time), 
  in case resource is bus. 
 

A component developer defines the resource 
consumption properties of an operation by worst-case 
analysis. These properties are calculated only for the 
operation body itself, excluding resource consumption 
properties of called operations. This approach allows 
calculating resource consumption of any sequences of 
operation calls. In this paper, we do not address 
platform and parametric variations of the operation 
resource consumption. The resource model should be 
specified for a particular reference platform. 
 
Component behaviour model 

The component behaviour model (BM) also belongs 
to the Robocop component model. BM specifies the 
behaviour of all operations impl_opr implemented by 
services of an executable component. A semi-formal 
specification of the model is as follows. 

 
m = BM, 

 where m is a Behaviour Model and 
 BM is a set of bm (behaviour of an operation). 

bm = (impl_opr, mutexed, behaviour, T), 
 where impl_opr is the implemented operation and 

behaviour is the operation behaviour description, 
T is a set of t (task triggers the operation is 
associated with), 

 mutexed shows if the operation is mutexed. 
mutexed = � {true, false}. 
behaviour = (called_opr1, called_opr2,  …called_oprn, CS), 

where called_opr1, …called_oprn is a sequence of 
called operations and 
CS is a set of cs (critical sections). 

called_opr = (opr, nmb_iterations, calling_type), 
 where opr is the called operation and 

nmb_iterations - number of times the operation is 
called, 

 calling_type � {synchronous, asynchronous}. 
cs = (called_opr1, called_opr2,  …called_oprn). 
t = (periodicity, param, PRECED), 

where periodicity � {periodic, sporadic, 
aperiodic}, 
PRECED is a set of preced (preceding task 
triggers), 

 param includes various parameters of t. 
param = (period, interarrival_time, priority, deadline, 

offset, jitter). 
preced = (t, ratio), 

where t is a task trigger that precedes the specified 
task trigger. 

ratio = nmb_jobs_of_current_task / 
nmb_jobs_of_preceding_task. 

 
Firstly, for each operation impl_opr implemented by 

an executable component, a component developer 
defines its mutual exclusion property. If an operation is 
mutexed, at most one thread can enter the operation at 
the same time. Secondly, operation behaviour 



describes a sequence of operation calls to other 
interfaces made inside the implemented operation. For 
example in Figure 5, the implemented operation 
Decoder.decode() has a behaviour described by the 
following call sequence: IGetElement.getFrame(), 
IStoreElement.storeFrame(). The IGetElement and 
IStoreElement are the interfaces provided by 
ReadBuffer and WriteBuffer services correspondingly. 
 

 
Figure 3. Sequence of operation calls 

(behaviour) of decode() operation. 
 

For each called operation called_opr in the 
sequence, the number of iterations nmb_iterations and 
calling type calling_type are specified. Additionally, a 
set of critical sections CS can be specified if necessary 
in behaviour. Critical section cs points out the 
operation of which the execution cannot be pre-empted. 
Please note that each called_opr must belong to one of 
the required interfaces for the service. 

Finally, a component developer must define the 
operation autonomous behaviour T. We consider that 
an operation has autonomous behaviour if there is at 
least one task trigger t implemented by the operation. 
One of the examples of the task trigger is an iterative 
thread, triggered periodically by a timer. In the decoder 
example, the decode() operation can implement an 
iterative thread, which is triggered by the system timer 
each 20 ms. Thus, the whole calling sequence repeats 
each 20 ms. In the model, the task trigger properties 
can be specified, including periodicity, period, 
deadline, offset, precedence constraints preced, etc. 

Concluding, these two models describe component 
resource consumption and behaviour properties 
independent of the application context where the 
component is going to be used. 
 
Application scenario model 

The application scenario model (SM) specifies 
application structure and behaviour for a critical or 
commonly used execution scenario. Several SMs can 
be built for an application, depending on a number of 
interesting scenarios. An application developer is in 
charge of the scenario models construction. The semi-
formal structure of the model is presented below. 

 
SM = (appl, structure, E, T, depend), 

where E is a set of e (event coming from outside of 
the appl), 
T  is a set of t (task trigger the appl implements), 
depend is a set of components used in the appl. 

structure = (SI, B), 
where SI is a set of si (service instances) and 

 B is a set of b (bindings). 
b = (from, from port, to, to port). 
from, to = service instance. 
from port, to port = port name (named interface).  
e and t = (opr, periodicity, param, PRECED), 

where opr is an operation triggered by the e or t, 
 periodicity � {periodic, sporadic, aperiodic}, 
 PRECED is a set of preced (preceding e or t), 
 param is number of parameters of e or t. 

param = (period, interarrival_time, priority, deadline, 
offset, jitter). 
preced = (e or t, ratio), 

where e or t is event or trigger which precedes the 
current one. 

ratio = nmb_current_events/nmb_preceding_events. 
 
Firstly, an application developer specifies an 

application structure for a scenario. The structure is 
represented by a tuple containing SI (set of service 
instances si) and B (set of bindings between the si). A 
binding includes information about the bound service 
instances from, and to, and in/out ports of the instances 
from port, to port. In Figure 6, dashed lines represent 
the bindings. 

 

 
Figure 4. Example of application structure. 

 
Secondly, the model defines the components 

(depend) used in the application. This data links the 
scenario model with the behaviour and resource 
models of the corresponding components. 

Finally, the application scenario model specifies sets 
E and T of events e and in-application task triggers t, 
respectively. We define an as event any influence 
coming from outside to an application that changes the 
current application state. Hardware interrupt, timer or 
signal from an external sensor can trigger the event. 



Normally, this influence is expressed as a call of one of 
the operations of the application component.  

Conceptually, an in-application task trigger is also 
an event, but it comes from inside the application. In 
other words, this task trigger is implemented by the 
application. Please recall that we also have a task 
trigger notion in the component behavior model. That 
task trigger differs by being implemented inside a 
component. The two types of task triggers are 
separated into different models, because an in-
component task trigger must be specified by a 
component developer and an in-application task trigger 
must be specified by an application developer. 

The application task trigger calls one of the 
operations of the application components, thereby 
starting the task action sequence. Therefore, the e and t 
must be associated with the operation called first (opr). 
In Figure 7, an application periodic task trigger calls 
decode() operation each 40 ms. Thus, in the scenario 
model the trigger shall be associated with the operation. 

For each event e as well the in-application task 
trigger t, its periodicity, parameters param and 
precedence constraints preced are specified. 

 

 
Figure 5. Task triggered by in-application 

trigger. 
 

When the scenario models are ready, an application 
developer proceeds to the simulation phase. 
 
4.4. Model Compilation and Schedulability 
 

In the Space4U project, we have developed a 
Robocop Integration Environment (RIE) tool that does 
compilation of the above-mentioned models, simulation 
of an application scenario and visualization of the 
simulation data. 

In the simulation and schedulability analysis phase, 
an application developer brings together the 
application scenario model and combined behaviour-
resource models of the components deployed in the 
application. At this stage this stack of models can be 
compiled by RIE. The conceptual goal of the 
compilation is to identify and reconstruct a set of tasks 
that the application executes in a particular scenario.  

The task-set reconstruction uses only the data from 
the three above-mentioned models. These models 

contain all events; in-application and in-component 
task triggers, as well as operation call sequences that 
define a flow of control for the tasks.  

For the decoder example, the task reconstruction 
works as follows: the related behaviour model specifies 
the operation call sequence of the operation decode(): 
getFrame(), storeFrame() (see Figure 5). 
Afterwards, the compiler gathers from related behavior 
models the behaviour of these two operations. The 
operation getFrame() calls one operation belonging to 
other interfaces: ILogData.logEvent()(see Figure 8).  

 

 
Figure 6. getFrame() and storeFrame() 
behaviour. 
 

If an operation has an empty operation call sequence 
(does not call operations belonging to other interfaces), 
it is considered as a leaf and the task generation 
proceeds to the next branch. Let us assume that 
operation ILogData.logEvent() is such a leaf. The 
next operation storeFrame() then also calls this leaf 
operation: ILogData.logEvent() (see Figure 8). Thus, 
the complete reconstructed sequence of the operations 
executed in the task is as shown in Figure 9.  

 

 
Figure 7. Task generated from the models. 

 
A resource consumption property of each operation 

in this sequence is specified in the claim primitive in 
the related component resource model (see Section 
6.1). Knowing this data, we can calculate total resource 
consumption of the task. For example, the CPU time 
used by the task (execution time) is the sum of CPU 
times used by the operations composing the task. In 
Figure 9, the total execution time of the task amounts 
to: 8ms + 5ms + 2ms + 5ms + 2ms = 22ms. The other 
task parameters (period, offset, and deadline) and 



precedence are obtained from corresponding task 
trigger properties specified in the models. 

Synchronization constraints for each task are also 
extracted from the models. The task precedence has 
been already mentioned. Mutexed and critical section 
cs, which are properties of an operation, as well as a 
task precedence preced specified in the component 
behavior model, all define synchronization constraints 
of tasks. If a mutexed operation of the same service 
instance is used by two different tasks, then only one of 
the tasks can execute the operation at the same time.  

An execution of the reconstructed tasks of the 
scenario is simulated by a virtual scheduler. During the 
simulation, these synchronization constraints are taken 
into account.  

The simulation results are represented as a task 
execution timeline (see Figure 10). 

 

 
Figure 8. Task timeline execution of scenario 

 
The schedulability analysis of the simulation data 

gives us the timing properties of an application. The 
response time, blocking time, number of missed 
deadlines can be found for each task. Beside this, the 
processor utilization bound can be analyzed per 
application. The predicted properties can be validated 
with respect to the application requirements. 
 
5. Video Encoder Case-study 
 

The objectives of the video encoder case-study are 
to show practical aspects of the approach utilization 
and give further clarification. The example starts with 
requirements, goes through the prediction-enabling 
composition workflow and ends with predicted timing 
properties of the application. 
 
5.1. Requirements 
 

Taking into account that we do not focus on 
functional requirements, the required functionality can 
be expressed in one sentence: the application shall 
encode on-the-fly the audio and video signals in 
MPEG-4 format and subsequently multiplex the 
compressed signals into one stream (REQ1). 

The extra-functional requirement for the TV-like 
application: the number of skipped frames during the 
encoding on-the-fly should be NULL (REQ2). This 
implies that we do not allow missed deadlines for audio 
and video encoding tasks (real-time application). 
 
5.2. Component selection 
 

After the requirements elicitation, the process of the 
component-based application development continues 
with component selection. Because our application has 
a real-time nature, we should select only real-time 
aware components (resource and behaviour models in 
their distribution package). 

We selected two real-time aware components that 
bring the required functionality: MPEG4_Encoder and 
Data_Broker having three service each as indicated in 
Figure 9. Each service has provides and requires 
interfaces. For instance, the VideoEnc service provides 
IVideoEnc interface and requires IBufferAccess and 
IMux interfaces. The IVideoEnc interface encapsulates 
the VideoEncode() operation. All public operations are 
also represented in Figure 9. 
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Figure 9. Selected components with services, 

interfaces and operations. 
 
The corresponding resource and behaviour models 

(see Figure 10) are constructed according to the rules 
defined in Section 4. The behaviour (resource) model 
specifies behavioral (resource usage) aspects of all 
public operations of the component. Note that there are 
no task-triggering operations specified in services of 
both components (fields for task triggers T are empty). 
It means that all operations are passive (have no 
autonomous behaviour) and should be controlled by 
application-level events and task triggers. 
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Figure 10. Behaviour and resource models of 

the components. 
 
5.3. Composing the encoder application 
 

The design (composition) phase, which is the first 
stage of the workflow, consists of three steps: service 
instantiation, service instances binding and design of 
application level events and task triggers.  

The service instantiation is basically a process of 
defining a structure of an application depending on 
required functionality. Our encoder should read, 
encode AV streams and multiplex them in one MPEG-
4 stream. Finally, this stream should be stored. 
Therefore, the encoder should have at least the 
following service instances: audio-, video- readers, 
audio-, video- encoders, multiplexer, and writer. Data 
communication between the instances can be realized 
by a set of buffers. This structure (service instantiation) 
is depicted in Figure 11. As can be noticed, the Reader 
service is instantiated twice (aReader, vReader) and the 
Buffer service has three instances (vBuffer, aBuffer, 
mBuffer). 

The second step is binding the service instances. 
Requires interfaces are connected to provides 
interfaces of the same type, thus defining data and 
control flows in the application. Figure 11 depicts the 
service instance bindings by the connecting arrows. 

 
Figure 11. Binding the encoder service 

instances. 
In the third step, a developer identifies necessary 

application-level events and task triggers. In 
component-based systems, an application-level task 
trigger can be implemented in the code of application 
as a separate thread that wakes up periodically (by 
timer signals) and invokes one of the component 
operations. In its turn, an event is usually implied by 
hardware platforms (i.e. interrupts). A developer needs 
not to implement events, but should take them into 
account during the design phase. 

The services composing the encoder application 
have no autonomous operations with task triggers 
inside (all services are passive). In order to make the 
application alive, we designed six task triggers 
executing on the application level (see Figure 12). Each 
of the task triggers periodically invokes one of the 
operations, thereby creating a separate thread of 
control. For example, Trigger1 invokes the 
IRead.readFrame() operation of the vReader service 
instance. This operation reads one video frame from a 
file and stores the frame in vBuffer. All triggers are 
designed to fire with periodicity of 40 ms, since this is 
common video streaming rate. We defined the 
deadlines for the triggered tasks to be equal to their 
periods (40 ms). We specified no precedence 
constraints for the tasks. Having this information we 
can construct an application scenario model. 
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Figure 12. Application level task triggers. 



 
5.4. Constructing a scenario model 
 

The construction of a scenario model starts with 
identification of relevant scenarios. The relevant 
scenario can be either a common execution scenario or 
a critical scenario. In the encoder case, the common 
execution scenario (e.g. encoding mode) is relevant to 
consider, because it implies high resource usage and 
correlates with REQ2 (see Section 5.1). 

The application scenario model (defined in Section 
4.3) requires data about service instances, bindings, 
events and task triggers for the selected scenario. This 
data is already known from the above-mentioned 
design steps, so that we only need to represent this data 
in the scenario model format. A major part of this 
scenario model is depicted by Figure 13. 
 

 
Figure 13. Application scenario model for 

encoding scenario. 
 
After all related data is inserted in the application 

scenario model; we give a flow to the RIE for the 
models compilation and simulation of the compiled 
tasks. 
 
5.5. Model compilation 
 

The RIE compiler reconstructs the tasks in the 
application scenario (reconstruction process is 
explained in Section 4.4). Here we graphically 
represent the result of the task reconstruction (see 
Figure 14). The tasks are circular lines with arrows 
showing the control flow directions. For example, 
video encoding task is triggered by Trigger3 who calls 
operation VideoEncode(). This operation first calls 
getFrame() operation of vBuffer, then encodes the 
received frame and finally calls putVFrame() operation 
of Mux service instance. This task repeats each 40 ms. 

The call sequence diagram for the task is depicted in 
Figure 15. 
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Figure 14. Reconstructed tasks after models 

compilation. 
 

 
Figure 15. Video encoding task. 

 
5.6. Simulation of tasks execution 
 

An execution of the reconstructed tasks can be 
further simulated by the RIE scheduler. The current 
algorithm used in the RIE scheduler is rate monotonic 
with bounded priority inversion. The virtual scheduling 
of the encoder tasks results in the execution timeline 
depicted in Figure 16. The three bold vertical lines 
show: completion, deadlines and triggering moments of 
each task instance. 

 

 
Figure 16. Part of the task execution timeline 

for encoder application. 
 
5.7. Schedulability analysis 
 

The schedulability analysis leads to the 
requirements validation. Our extra-functional REQ2 
demands no missing deadlines of the audio and video 



encoding tasks (see Section 5.1). According to the 
generated tasks execution timeline (Figure 16), video 
encoding (TaskID = 3) and audio encoding (TaskID = 
4) tasks meet all deadlines for a simulation period of 10 
seconds. Note that this is only true under the condition 
that the assigned CPU budget is 100 %. 

This step ends with the conclusion that the designed 
application meets its real-time requirements and we can 
now proceed to the implementation phase. 
 
6. Conclusions 
 

We have extended the scenario-based approach for 
predicting resource usage of component-based systems 
in [2] with the specifications of task synchronization, 
component behaviour model and application scenario 
model. This allows simulation of the real-time task 
execution per application scenario and handling of 
synchronization constraints. Based on the simulation 
results, a developer can derive the behaviour and 
dynamic resource consumption of an application per 
scenario. Afterwards, a developer uses this data for 
prediction of the real-time properties of an application. 
The method was validated through the Robocop 
Integration Environment tool that automates complex 
operations and guides a developer through the 
composition process. 

The proposed prediction approach has a number of 
benefits. Firstly, it is general and can be applied in 
different application domains and for various 
architectural styles. For example, it works for 
‘blackboard’ and ‘client-server’ architectures. 
Secondly, the approach allows prediction of 
dynamically changing resource usage. Thirdly, the 
approach is more accurate by incorporating task 
synchronization constraints and distinguishing 
synchronous and asynchronous communication. 
Fourthly, the method is compositional, meaning that 
the resource-usage data of an application can be based 
on data from its constituent components. Finally, the 
use of scenarios decreases modeling complexity. 

The proposal also has some assumptions and 
limitations that need further study. Firstly, it assumes 
that resource usage is constant per operation, whereas it 
actually may depend on parameter values passed to 
operations and/or application state. Secondly, the 
method is restricted to the Robocop component model, 
which has a notion of ‘requires interfaces’, whereas 
other architectures such as COM [4], do not have this 
notion. Finally, it provides no techniques for specifying 
the component resource model for different platforms. 
Extending the relatively simple case in this paper, we 

are currently validating the approach on more complex 
MPEG-4 codec software. 
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