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Abstract. Designing architectures requires the balancing of multiple
system quality objectives. In this paper, we present techniques that sup-
port the exploration of the quality properties of component-based archi-
tectures deployed on multiprocessor platforms. Special attention is paid
to real-time properties and efficiency of resource use. The main steps of
the process are (1) a simple way of modelling properties of software and
hardware components, (2) from the component properties, a model of an
execution architecture is composed and analyzed for system-level quality
attributes, (3) for the composed system, selected execution scenarios are
evaluated, (4) Pareto curves are used for making design trade-offs ex-
plicit. The process has been applied to several industrial systems. A Car
Radio Navigation system is used to illustrate the method. For this sys-
tem, we consider architectural alternatives, show their specification, and
present their trade-off with respect to cost, performance and robustness.

1 Introduction

A major challenge in system development is finding the best balance between
different quality requirements that a system has to meet. Time-to market con-
straints require that design decisions be taken as early as possible. To address
this challenge, the architect should be able to solve a number of orthogonal issues:
a) construct the component architecture satisfying the functional requirements,
b) evaluate (predict) the extra-functional quality properties of the composed
architecture, and c) identify several architecture alternatives that satisfy both
types of requirements. Essentially, he needs a means to efficiently explore this
architectural design space against multidimensional quality attribute scale.

A concurrent trend is the assembly of systems out of existing components
(which can be both software and hardware), as this reduces development time
and cost. Within this component-based approach, the challenge of early archi-
tecture assessment shifts to the evaluation of global system properties based on
the properties of the constituent components. For this reason, the component-
oriented society needs to develop techniques for modelling component properties
such that these can be composed into a system model. Each model type usu-
ally addresses one attribute (performance, behaviour or cost). Upon component



integration, models of the same type are composed into a system model of the
corresponding system attribute. There has been a broad range of approaches
towards this problem, known as predictable assembly ([1], [2] and [3]). The CB-
SPE approach [4] provides a solid technique for evaluating the performance of
component-based software systems. A prediction method based on formal spec-
ification of component non-functional properties is presented in [5]. Currently,
these approaches focus on prediction of a single quality attribute (QA). To moti-
vate various design trade-offs, assessment of multiple QAs is needed. The process,
described in this paper, allows prediction of performance, robustness and cost
QAs, and enables design space exploration with respect to these attributes.

The following methods feature multi-objective trade-off analysis. The method
presented in [9] uses Petri nets with parameterized interfaces to assess perfor-
mance and safety. For large system this method becomes computation expen-
sive. Less calculation expensive PISA framework for design space exploration
featuring QA prediction have been proposed in [10] for network processor ar-
chitectures. It uses Real-Time Calculus that abstracts from the state space and
has low calculation complexity. Recently proposed SESAME framework [11] uses
simulation, application and architecture models to predict performance proper-
ties and explore design choices. The SPIE2 framework [12] adds the possibility
to optimize the architecture using genetic algorithms. However, none of the last
three methods supports designing a system out of conventional component with
provides and requires interfaces. Instead, they define a component as an active
entity (task or process). In [16] the authors propose compile-time framework
that explores and optimizes performance properties of systems built out of ac-
tive conventional components.

Contribution. In this paper we present the design space exploration (DSE)
process that supports both active and passive COTS components. It allows soft-
ware and hardware composition and mapping the components on the hardware
nodes. The process enables accurate prediction of system performance attributes
by composition of performance models of individual components. The compo-
nent performance models are easy to construct and use, which speeds up the
architecture assessment time. The supporting RTIE tool, developed by us, helps
to construct multiple architecture alternatives and find the optimal solutions
against multiple criteria. We illustrate the process by a case study on finding
the optimal architecture for the Car Radio Navigation (CRN) system.

The paper is structured as follows. Section 2 explains the requirements of
the CRN system to be designed. Section 3 describes our multidimensional DSE
process in detail. Section 4 shows how we used the process to design and assess
the architectures for CRN system, besides, it reveals the experimental results of
the case study. Section 5 concludes the paper.

2 Car Radio Navigation System

We illustrate our process for resolving performance design trade-offs in CBA by
designing a Car Radio Navigation system. This CRN system had to be built



according to the component-based paradigm on a cost-limited (yet not prede-
fined) hardware platform. However, the major challenge was to find at an early
design stage an optimal system architecture in terms of the vital QAs like real-
timeliness, robustness and cost. Technically speaking, the goal was the following:
given a set of functional and extra-functional requirements, as well as a set of
software and hardware components, to determine a set of architecture solutions,
that are optimal with respect to the above-mentioned quality attributes.

Requirements. We divided the requirements into two categories: functional
(Fn) and extra-functional (RTn). The main ones are summarized below:
F1: The system shall be able to gradually (scale = 32 grads) change the sound
volume.
RT1: The response time of the operation F1 is less than 200 ms (per grade).
F2: The system shall be able to find and retrieve an address specified by the
user.
RT2: The response time of the operation F2 is less than 200 ms.
F3: The system should be able to receive and handle Traffic-Message-Channel
(TMC) messages.
RT3: The response time of the operation F3 for one message is less than 350 ms.

Functional decomposition. Requirement analysis led us to a conceptual
software view depicted in Fig. 1.
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Fig. 1. Overview of the CRN system functionality.

The CRN logical view has three major functional blocks:

— The man-machine interface (MMI), that takes care of all interactions with
the end-user, such as handling key inputs and graphical display output.

— The navigation functionality (NAV) is responsible for destination entry, route
planning and turn-by-turn route guidance giving the driver visual advices.
The navigation functionality relies on the availability of a map database and
positioning information.

— The radio functionality (RAD) is responsible for tuner and volume control
as well as handling of TMC traffic information services.



In the next section, we illustrate our DSE process that enables architecture
comparison and supports resolving design trade-offs with respect to multiple
performance attributes and cost.

3 Multidimensional Design Space Exploration Process

Fig. 2 depicts our DSE process that uses a component-based architecture as the
skeletal structure, onto which the composition of QAs can be performed out of
models of individual components. We developed an RTIE (Real-Time Integration
Environment) toolset that supports all the steps in the DSE flow. A distinguish-
ing feature of our process is that the analysis is based on the evaluation of a
number of key execution scenarios. The use of scenarios enables efficient analy-
sis while also enabling the architect to trade modelling effort (modelling multiple
scenario’s improves the 'coverage’ of the behaviour of the system) against confi-
dence in the results. The other cornerstones of the approach are:

modelling of software components, processing nodes, memories and bus links,

— composition of system QAs out of these models,

— prediction of a system timing behaviour and resource usage, required for real-
time system design,

— pareto curves for identification of optimal architecture alternatives.
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Fig. 2. Multidimensional design space exploration process.



Let us outline the process phases. As input for an architecture, the sys-
tem designer has various third-party hardware and software components (in a
repository). Each component should be supplied with a set of models address-
ing important component attributes, like timeliness, cost, resource use. Relevant
types of models for a software (SW) component are: functional, resource and
behaviour models. Our example shows that these models can be made with
comparatively little effort. Typical models for hardware (HW) components are:
memory, communication and processing models.

The following steps are to be done for each architectural alternative (see
Fig. 2). Considering more alternative solutions leads to more complete coverage
of the design space.

Software Architecture Composition. The designer selects from the (RTIE)
repository the software components that together satisfy the defined functional
requirements and may satisfy extra-functional requirements. The component se-
lection is done by checking the functional models of available components with
respect to the functional requirements. The process assumes that the selected
components are supplied along with corresponding set of models. By means of
the RTTE graphical tool, the designer specifies component composition by instan-
tiating and connecting components. The resulting composition is converted into
XML-file with links to the individual component models stored in the repository.

Hardware Architecture Specification. The hardware architecture spec-
ification can be done in parallel. In most of the cases, a hardware platform is
pre-specified. If not, the designer can select available hardware components from
a repository and choose a specific topology, number of processing nodes, types
of memory, communication means and scheduling policy. Then, he puts these
together on a design canvas, thereby specifying the hardware architecture. The
architecture is also represented in XML-file with references to the models of
hardware nodes.

SW/HW Mapping. Once the software and hardware architecture are spec-
ified, the mapping of the software components on the hardware nodes is made.
The mapping shows on which processing node each software component should
be executed. Efficient mapping is required to distribute the load of hardware
resources in an optimal way. However, at the first mapping iteration, it is not
clear how to deploy the software components to achieve the optimal load distri-
bution. Various mapping alternatives are possible at this stage. Each alternative
represents a system architecture.

Model Synthesis and Scenario Simulation. Some system attributes like
cost can be found analytically given a static architecture. However, for prediction
of other important system attributes (performance and robustness) the behav-
iour of a system needs to be found. In our process, we obtain these attributes
through the scenario simulation method [6]. This method synthesize a model



of the task execution architecture by composing resource and behaviour models
of individual software components, performance models of hardware nodes and
scenario model of the constructed software composition. All these models en-
able parameter-dependent specification. For the details of parameter-dependent
modeling the reader is referred to [15]. The following two paragraphs specify
models in more detail.

The resource model contains parameter-dependent processing and memory
requirements of each operation implemented by the component. The resource
requirements can be obtained by profiling of each individual component on a
reference processor. The reference processor is also specified in the model in
order to scale the operation resource requirements to any other processor. The
behaviour model specifies for each implemented operation a parameter-dependent
sequence of external calls to operations offered by other interfaces. The external
call is a (synchronous or asynchronous) invocation of other interface’s operation
made inside the implemented operation. The data for the behaviour model can
be obtained by the source-code analysis. The performance model of a hardware
block specifies its capabilities. A performance model for a processing core defines
its instruction type (RISC, CISC or VLIW) and execution frequency. A model for
a memory IP block describes a memory type (SRAM, SDRAM, etc), a memory
size in MBytes and addressing type. A bus performance model specifies the
scheduling protocol (TDMA, CDMA, fare use, etc) and bandwidth size. The
data for performance models can be obtained by measurements or from supplier
data sheets.

For software composition architecture, the designer defines a set of resource-
critical scenarios and for each of them specifies an application scenario model.
Critical scenarios are the application execution configurations that may intro-
duce processor, memory or bus overload. In the scenario, the designer may spec-
ify environmental stimuli (events or thread triggers) that influence the system
behaviour. For a stimulus, the designer may define the burst rate, minimal inter-
arrival time, period, deadline, offset, jitter, task priority, and so on. By defining
the stimuli, the designer specifies autonomous behaviour of the system, or emu-
lates an environmental influence (interrupts, network calls) to the system.

The scenario, resource, behaviour and performance models are synthesized
by the RTIE tool. The objective of the synthesis is to reconstruct (generate) the
tasks running in the application. Prior to the synthesis, the task-related data
is spread over different types of models. For instance, the task periodicity may
be specified in an application scenario model, whereas the information about
the operation call sequence comprising the task is spread over corresponding
component behaviour models. The compiler combines these two types of data
in the task information containing period, jitter, offset, deadline and operation
sequence call graph. The synthesis results in the task execution architecture that
contains parameter-dependent data on the tasks running in the designed sys-
tem and data on the allocation of these tasks on the software and hardware
architectures. An example of this allocation is given in Fig. 3. Here, the system
executes three tasks using two processors and five deployed service instances. The
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Fig. 3. Task allocation on the component and hardware architecture.

Taskl executes on Processorl and consists of operations offered by ServiceA and
ServiceB. The Task3 execution is spread over both processors and includes a
communication via the on-chip network. The task executes operations offered
by three service instances: ServiceB, ServiceD and ServiceE.

The obtained task execution architecture is a subject for virtual schedul-
ing (simulation). A simulation-based analysis employs virtual schedulers that
simulate the execution of the tasks specified in the system model for some pe-
riod of time. The selection of a scheduling algorithm is dictated by the types of
communication lines and operating system used for the designed system. The
RTIE tool provides the following virtual schedulers: rate monotonic (RM), dead-
line monotonic (DM), earliest deadline first (EDF), constant bandwidth server
(CBS), time division multiple access (TDMA) and fare-use algorithms. The simu-
lation techniques feature both processing and communication resources schedul-
ing. An example of the simulation results is given in Fig. 4.

The diagram shows the execution timelines of the three processors and the
bus-load timeline. For each processor timeline, the tasks executing the opera-
tions of the services that are mapped on the processor are shown. For each task
instance, its initiation and completion times are given. Beside this, the diagram
reflects the time slots when a task instance misses its deadline. The bus-load
timeline represents the timed bus utilization done by the communicating opera-
tions in these three tasks. The statistics, generated from the simulation timelines,
gives the overall data on the predicted task properties and load of the resources.

Quality attribute extraction. The throughput, latency and resource con-
sumption QAs are extracted in a straightforward way from the generated task
simulation timeline. For other attributes, like robustness additional computation
is needed. Robustness can be calculated as performance sensitivity to stimuli rate
increase. For this, the designer changes the stimuli rate in each of the scenario
system models and redo the simulations. Comparison of the new task latencies
or resource use with the old values answers the question on how sensitive is the
architecture against the input event rate changes.

Multi-objective Pareto analysis. At this stage, having defined a number
of alternative architectures and predicted multiple QAs for each of them, we
look for an optimal design alternative. Pareto analysis is a powerful means for
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Fig. 4. Execution timelines for tasks on three processors obtained by RMA simulation.

resolving conflicting objectives [7]. The multi-objective optimization problem
does not yield a unique solution, but a set of solutions that are Pareto-optimal.
An example of the Pareto analysis is shown in Section 4.4.

4 The Quest for an Optimal CRN Architecture

For this case study, we implemented and packaged three Robocop software com-
ponents: RAD, MMI and NAV, which correspond to above-mentioned CRN func-
tional blocks. The Robocop component model [8] supports modelling and com-
position of a wide spectrum of component attributes and is targeted to embedded
systems domain. The Robocop component is an open set of models (see Fig. 5).

For example, the functional model specifies the component functionality,
while resource model (see Fig. 6.B) specifies resource utilization of the com-
ponent operations. The executable entity (.dll file) is also considered as a special
type of model. A Robocop component can be downloaded from a common repos-
itory as a black-box and used for third-party binding. A component developer
is responsible for specification of the models. The executable component may
include a number of executable entities called services. A service may have pro-
vides and requires interfaces. The provides interfaces specify and give access to
operations implemented by the service.
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The three implemented components, their provides/requires interfaces and
operations are depicted in Fig. 6.A. The MMI component provides IGUIControl
interface and requires to be bound to [Parameters and IDatabase interfaces. The
GUIControl interface provides access to three implemented operations: setVol-
ume (handles the volume rotary button request from the user), setAddress (han-
dles the address keyboard request from the user) and updateScreen (updates the
GUI display). The NAV component provides IDatabase, ITMC interfaces and re-
quires operations from the IGUIControl interface. The IDatabase interface gives
access to addressLookup() operation, which queries the address in the database
and finds a path to this address. The ITMC interface provides an access to
decodeTMC() operation. The RAD component provides IParameters, IReceiver
interfaces and requires ITMC interface. The two operations implemented by this
component are adjustVolume() and receive TMC().

Each component is accompanied by resource, behaviour (see Fig. 6.B), and
cost models. The resource model specifies resource requirements per individual
operation. The behaviour model describes the operation’s underlying calls to
operations of other interfaces. Besides, the model may specify a periodic thread
triggers (like Posix thread with a periodic timer), if they are implemented inside
the component. Both resource and behaviour models are composable, i.e. from
a number of behaviour models of constituent components one can generate a
system behaviour model. The composition principles are explained in detail in
[6]. The resource requirements (CPU claim) has been obtained by profiling of
each individual component on a reference RISC processor. The operation be-
haviour data has been generated from the component source code. For example,
the RAD behaviour model describes that the operation adjustVolume() synchro-
nously calls once the IGUIControl. updateScreen() operation. This model also
shows the bus usage of the adjustVolume() operation: 4 bytes. That means the
operation sends outside (as an argument of updateScreen()) 4 bytes of data.

4.1 Defining Architecture Alternatives

Following the process, we composed a component assembly (see Fig. 7.A) from
the available components. We were able to design only one software architecture
alternative due to a limited number of available software components. These
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Fig. 6. (A) Components used for the case study; (B) Behaviour and resource models
of the selected components.

three components were instantiated and bound together via pairs of their pro-
vides/requires interfaces. This assembly satisfies the three defined functional
requirements: F1, F2 and F3.

The next phase is to define a set of hardware architectures and map the soft-
ware components onto hardware. We reused five feasible alternative hardware
architectures with different mapping schemas proposed in [13] (see Fig. 7.B). For
instance, in Architecture A there are three processing nodes connected with a
single bus of 72 kbps bandwidth. The MMI _Inst component is executed (mapped)
on a 22-MIPS processor, the NAV _Inst component is mapped on a 113-MIPS
processor, and RAD _Inst component executes on a 11-MIPS processor. The ca-
pacity of the processing nodes and communication infrastructure was taken from
the datasheets of several commercially available automotive CPUs. The multi-
objective DSE process has been performed for these five solutions.

4.2 Scenarios and Task Generation

For our case study, we selected three distinctive execution scenarios to assess the
architecture against the six defined requirements. These scenarios should impose
the highest possible load on the hardware resources for accurate evaluation of
the real-time requirements RT1, RT2 and RT3.
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”Change Volume” scenario. The user turns the rotary button and expects
instantaneous audible and visual feedback from the system. The maximum rota-
tion speed of the button is 1 sec from lowest to highest position. For emulating
this user activity, we introduced a VolumeStimulus task trigger, which initiates
execution of the IGUIControl.set Volume() operation. The trigger parameters are
defined in the following way: the event period is set to 1/32 sec, as the volume
button scale contains 32 grades. The task deadline is set to 200 ms, according
to R1. The trigger and component assembly resemble a scenario model.

For this scenario, the RTIE tool generated (from the behaviour models of par-
ticipating components) the message sequence chart (MSC) of operation calls in-
volved in the task execution. The scenario model and obtained MSC are shown in
Fig. 8.A. The task is executed periodically (31 ms) and passes through MMI_Inst
and RAD _Inst.

” Address Lookup” scenario. Destination entry is supported by a smart
typewriter style interface. The display shows the alphabet and the user selects
the first letter of a street. By turning a knob the user can move from letter to
letter; by pressing it the user selects the currently highlighted letter. The map
database is searched for each letter that is selected and so on. We assume that
the worst-case rate of the letter selection is 1 time per second. This user activity
was emulated with a LookupStimulus trigger, which initiates execution of the
IGUIControl.setAddress() operation. The trigger period was set to 1000 ms. The
deadline for the address lookup task is 200 ms, according to RT2.
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The task-generation procedure outputs the task MSC for this scenario. The
obtained scenario model and MSC are shown in Fig. 8.B. The task is executed
periodically (1000 ms) and passes the MMI_Inst and NAV _Inst components.

”»TMC Message Handling” scenario. RDS TMC is a digital traffic in-
formation that enables automatic replanning of the route in case of traffic jam.
Traffic messages are received by the RAD component (in the worst case 1 time
per 3 seconds). We introduced a TMCStimulus trigger emulating these TMC
messages. The trigger initiates execution of the IReceiver.receiveTMC() opera-
tion. The period is set to 3000 ms. The deadline for the TMC handling task is
set to 350 ms, according to RT3.

The task-generation procedure resulted in the task MSC for this scenario.
The obtained scenario model and task are represented in Fig. 8.C. The task is
executed periodically (3000 ms) and passes through three component instances:
RAD_Inst, MMI_Inst and NAV _Inst. The fully decoded messages are forwarded
to the user.

4.3 Simulation and Attribute Extraction

The scenarios sketched above have an interesting property: they can occur in
parallel. TMC messages must be processed while the user changes the volume
or enters a destination address at the same time. Therefore, we combined these
three scenarios into two in order to get worst-case load on the system resources



during simulation. We defined ScenarioA as a combination of the SetVolume
and TMCHandling scenarios, and ScenarioB as a combination of the Address-
Lookup and TMCHandling scenarios. From the processing point of view, both
new scenarios have two tasks executing in parallel.

Table 1. Experimental data of the predicted quality attributes.

Attribute Arch. A | Arch. B| Arch. C|Arch. D |Arch. E

Max. task latency
against RT1 (RT1=200ms)| 37.55 ms | 37.55 ms | 30.52 ms | 9.18 ms | 3.58 ms
Max. task latency
against RT'2 (RT'2=200ms)| 86.51 ms | 86.51 ms | 61.49 ms | 63.79 ms [21.05 ms
Max. task latency
against RT3 (RT3=350ms)|325.05 ms|395.05 ms|101.71 ms|114.12 ms|46.02 ms

Performance sensitivity

(latency increase 57.6% 51.1% 3.2% 3.1% 0.0%
for TMC handling)
Cost, euro 290 305 380 335 340

Following our DSE process, we simulated the execution of these two scenarios
for each of the five system architectures. Before simulation, the following pre-
processing of the computation and communication time data is performed. For
each of the processing nodes, the execution times of all operations to be executed
on the node are calculated from the component resource and node performance
models (execution_time = CPU_claim_value * processor_speed). The communi-
cation time of the operation calls made through the processor boundaries is
calculated by dividing the bus claim value of an operation on a bus bandwidth
value, defined in a bus performance model.

The scenario simulation by preemptive RM algorithm (other policies can also
be used) resulted in (a) predicted system timing behaviour description and (b)
resource consumption of a system for each scenario and task worst-case latencies.
First, we analyzed the predicted task latencies against the real-time requirements
RT1, RT2 and RT3 for each of the five architectures (see Table 1).

Analyzing the table data, we concluded that except for Architecture B, the
rest of the four architectures satisfy the given real-time requirements. The Ar-
chitecture B does not satisfy the requirement RT3, because it has TMCHandling
task latency higher than 350 ms. Architecture A can be considered fast enough;
architecture E is the fastest solution. Then, we analyzed the architecture robust-
ness as a performance sensitivity to the changes in the input event rates (arrival
period of the three stimuli). We increased the data rate of the three stimuli by
5% (i.e. VolumeStimulus to 33.6 events/s, LookupStimulus to 1.05 events/s and



TMCStimulus to 0.35 events/s). Afterwards, we re-simulated the adjusted sce-
narios and obtained new task latencies. The fourth row in Table 1 describes the
increase of the latency of the TMC handling task as percentage of the normal
latency per architecture. For instance, the end-to-end delay of the TMC message
handling task for architecture A increased by 57.6%! This happened due to a
high overload of the 22-MIPS processor in this scenario.

The system cost attribute was calculated as a cumulative cost of the sys-
tem hardware and software components. The software component cost has been
defined with correlation to the component source code complexity (in reality,
the cost of a third-party component is defined by the component producer).
The cost of the hardware components was calculated from the available market
prices. The total calculated cost for each architecture is given in Table 1. The
most expensive architecture was number C due to the costly high-performance
processing nodes.

4.4 Analysis of Architecture Alternatives

The performance, robustness and cost attributes were selected as main objec-
tives for our design space exploration. Using the RTIE Pareto analysis tool, we
obtained several two-dimensional Pareto graphs. Two of them, robustness wvs.
cost and performance vs. cost are depicted in Fig. 9.
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Fig. 9. Pareto exploration graphs based on A) performance vs. cost, B) robustness vs.
cost quality attributes

The graphs can be evaluated as follows. The Pareto curve is drawn by con-
necting the alternatives that are closest to the origin. This curve defines a set of
optimal alternatives. With respect to the cost-robustness trade-off (see Fig. 9.B),
the optimal architectures are E, D and A, because they create the curve closest
to the null-coordinate point. The alternatives C and B are non-optimal. The
choice from the three alternative architectures depends on a weighting function
(priority) for the cost and robustness attributes. If cost has higher priority then
Architecture A should be selected. If performance sensitivity is a critical fac-
tor, then the Architecture A is not the best candidate. Moreover, looking at the



cost-performance trade-off (see Fig. 9.A), we can observe that TMC task latency
for Architecture A is close to its deadline. Thereby, low robustness (57.6%) of
Architecture A cannot be tolerated.

With respect to the cost-performance trade-off, again the optimal alternatives
are E, D and A, though C is not positioned on the hypothetical ideal Pareto
curve. The Architecture B gets out of competition because its TMC task latency
is higher than task deadline. Despite of its low cost, the Architecture A with low
performance and insufficient robustness can be also omitted.

Concluding, the Architectures E and D can be considered as optimal alter-
natives. If the cost weighting function is higher than performance or robustness
weighting function, the architecture E can be adopted for further development
and wice versa. In addition, we may also re-iterate the DSE process to achieve
acceptable performance for less costly Architecture A. For instance, we can add
a new software component TMCHandler, which reduces TMCHandling task la-
tency, or re-dimension one of the processing node. Another optimization tech-
nique would be to reduce the cost of the Architecture E, by sacrificing (within
acceptable range) its performance and robustness.

5 Conclusion

The proposed DSE process includes the steps of designing, predicting quality
attributes and evaluating the architectural alternatives. The accuracy of per-
formance attribute prediction has been previously validated by a case study on
a Linux-based MPEG-4 player [14]. The prediction accuracy on the general
performance proved to be higher than 90%. In all case studies, the modelling
effort required from application designer was fairly small - in the order of hours.
The most of the modelling work goes to the component developer, because he
should provide the component models. Thereby, the application developer may
relatively easily model a system out of 100 components (scalability), because
necessary models are already supplied within these components. The process en-
ables early identification of the bottlenecks of individual alternatives and leads
to selection of optimal solutions. In this paper we address strictly performance
attributes, however the proposed DSE process enables targeting other impor-
tant QAs, like reliability and availability. This extensibility is realized by open
component model structure, in which new model types can be easily added.

Limitations. There are certain limitations of the process. Firstly, the com-
ponent behaviour model represents an abstraction of the component source code,
leaving out implementation details. That eases the assessment of the component
and system behaviour, but limits the specification of all aspects of the source
code, like complex parameter-dependent loops and condition forks implemented
inside a component operation. Secondly, to explore the design space of a system,
a designer can only select the components that already contains required cost,
resource and behaviour models. Moreover, the QAs that are system-wide, like
safety and security, cannot be easily localized and modeled at the component



level. Thirdly, introduction of scenarios requires that the designer has a good
understanding of the system-environment interaction aspects, and has some an-
alytical skills in identifying the scenarios. The scenario identification criteria is
our ongoing work. Finally, the RTIE tool does not facilitate generation of com-
plete design space. Instead, the designer is responsible for identification of the
architecture alternatives.

In our future plans, we focus on development of automated optimization
algorithms as a back-end for this exploration process. Genetic algorithms can
be used to generate better alternatives by varying the topology, mapping and
scheduling-policy of an architecture.
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