
Predicting Real-Time Properties of Component Assemblies:
 a Scenario-Simulation Approach

Egor Bondarev1,2, Johan Muskens1, Peter de With2, Michel Chaudron1, Johan Lukkien1

System Architecture and Networking1 and Video, Coding and Architectures2 groups
Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
E.Bondarev@tue.nl

Abstract

This paper addresses the problem of predicting
timing properties of multi-tasking component
assemblies during the design phase. For real-time
applications, it is of vital importance to guarantee that
the timing requirements of an assembly will be met. We
propose a simulation-based approach for predicting
the real-time behaviour of an assembly based on
models of its constituent components.

Our approach extends the scenario-based method
in [2] by offering a system model that is tailored to the
domain of real-time applications. Contributions of this
paper include the possibility to handle the following
features: mutual exclusion, combinations of aperiodic
and periodic tasks and synchronization constraints.
The analytical approach we used in previous work
cannot handle these features. Therefore, we introduce
the simulation-based approach.

Our simulator provides data about dynamic
resource consumption and real-time properties like
response time, blocking time and number of missed
deadlines per task. We have validated our approach
using a video-decoder application.

1. Introduction

High-volume embedded appliances such as PDAs,
mobile phones, set-top boxes and DVD-players have a
high evolution rate. Strong competition in this domain
makes a rapid time to market as well as low
development cost vital. Typical applications for these
systems have real-time constraints, e.g., multimedia
applications. In combination with the scarce resources
these devices have, this leads to a major challenge for

product designers, even more while the functions of
these devices are always expanding.

For decreasing time to market and supporting this
evolution an open, component-based software
architecture for a middleware layer has been proposed
(in ITEA project Robocop [3]). The research described
in this paper was conducted in ITEA project Space4U
that uses this architecture as a starting point. It is aimed
at improving the Robocop architecture by developing a
framework that allows prediction of real-time
properties and resource consumption of an application
based on the components from which it is composed.

Component-based technology complicates the
prediction of resource consumption and timing
properties of an application. In component-based
systems, the actual behaviour and resource
consumption is determined by a collection of internally
developed and third-party components. Thus, the
prediction task becomes twofold. First, find and
express the component’s extra-functional properties.
Second, combine these properties in order to predict
the behaviour of the composition of the constituent
components. In the sequel, we will denote an
application also as an assembly, because it makes use
of the underlying components.

The challenge of predictable component assembly is
of significant interest because of the rapid development
of component-based software. Therefore, we present a
brief literature overview. Some approaches give an
engineering practice [7-9] to the problem. A very
interesting technique that allows design-time
estimations of real-time properties of component-based
systems is presented in [10]. In this technique, many
possible types of software constructions are taken into
account, like synchronous and asynchronous
communication, as well as synchronization constraints.

Recent work on the prediction of performance for
evolving architectures is described in [11]. This
approach is based on collecting the component
performance data on different platforms and
interpolating it for new components or platforms. Real-
time frameworks have been introduced in the object-
oriented development field. Methods have emerged
that enable execution of UML-like specifications,
notably Room [12] and Rhapsody [13]. The PRIMA-
UML methodology [14] applies queuing networks and
extends UML with a real-time performance model for
system performance validation. The scenario-based
approach [15] involves estimating static resource
consumption of a component assembly.

In contrast, through our scenario simulation
approach we address a dynamic instead of static
resource consumption, thereby giving more accuracy in
the prediction of the assembly behaviour. With respect
to task synchronization, we adopt the use of
synchronization constraints for further adding accuracy
in the prediction. The approach still requires little
effort from an application developer, because the
introduction of application scenarios narrows the state-
space and behavior of an application that the developer
should model and simulate.

This paper is structured as follows. Section 2
presents the Robocop component model, as a starting
point. Section 3 gives the definitions of the timing
properties, tasks and synchronization constraints.
Section 4 outlines the proposed approach. In Section 5
we discuss the workflow of the approach. Section 6
specifies models needed for simulation and effective
prediction. Section 7 describes the simulation and
schedulability analysis part of the prediction technique.
Section 8 concludes with the benefits and drawbacks of
the proposed prediction approach.

2. Robocop component model

In this section we discuss the Robocop component
model. The model is inspired by existing component-
based architectures, such as COM [4], CORBA [5],
and Koala [6]. A Robocop component is a set of
possibly related models M (see Figure 1). Each
individual model m provides a particular type of
information about the component. Models can be
represented in human-readable form (e.g.
documentation) or in binary code. One of the models is
the executable model that contains the executable
component. Other examples of models are: resource
model, functional model, and behavior model.

Figure 1. Example Robocop component model

A component offers functionality through a set of

‘services’ P (see Figure 2). Services are static entities,
which are the Robocop equivalents of public classes in
object-oriented (OO) programming languages. More
formally, we can specify an arbitrary executable model
m by:
m = P,

 where m is an Executable Model and
 P is a set of p (services).

Services are instantiated at run-time, using a service
manager. The resulting entity is called ‘service
instance’, which is a Robocop equivalent of an object
in OO programming languages.

Figure 2. Example of executable component
representation.

A Robocop service may define several interfaces

(ports). We distinguish a set of ‘provides’ ports PR and
a set of ‘requires’ ports REQ. The former defines
interfaces that are offered by the service, while the
latter defines interfaces that the service needs from
other services in order to operate properly. An interface
is defined as a set of implemented operations impl_opr.
A service p being part of the above-mentioned
executable model is specified by:
p = (PR, REQ),

 where PR is a set of pr (provided ports) and
 REQ is a set of req (required ports),

pr = (name, interface),
req = (name, interface),
interface = O,
 where O is a set of impl_opr (impl’ted operations).

Please note that a Robocop service is an equivalent
to a component in COM or CORBA, i.e. a service is a
subject of composition, and it has input and output
ports. A Robocop component is a deployable container
that packages these services. Therefore, in the Robocop
context the term composition means a composition of
services.

In Robocop, as well as in other component models,
service interfaces and service implementations are
separated to support “plug-compatibility”. This allows
different services that implement the same interface to
be replaced. As a consequence, the actual service
implementations to which a service will be bound do
not need to be known at the time of designing that
service. This implies that resource consumption cannot
be completely determined for an operation, until an
application binds the required interfaces of the instance
of the service to provided interfaces.

The Robocop architecture implies no
implementation-level constraints. A service can
implement any number of threads. Beside this,
synchronous and asynchronous communication types
are possible.

3. Timing properties, tasks and
synchronization

This section defines the basic terms used in the
paper, e.g. timing property, task and task
synchronization constraints. There is a clear difference
between the component and application timing
properties. The component timing properties are
independent from system run-time execution and
scheduling. In most of the cases, these properties are:
worst-case, mean-case and best-case execution times
per operation.

The application timing properties, instead, are
closely coupled to run-time instances, tasks and
scheduling algorithms used in the system. We
concentrate on the following timing properties:
response and blocking times of a task as well as the
number of missed deadlines of a task.

The response time of a task is not just a sum of
execution times of the operations comprising the task.
Usually, the response time is composed of the
execution time, blocking time and preemption time of
the task. Therefore, for the assembly timing property,
the task synchronization and scheduling aspects should
be considered.

In out context, the task is an event-triggered
sequence of executed operations. The operations
composing a sequence may be implemented by
different services. The operations within the sequence

may be called synchronously and asynchronously. The
tasks my have synchronization constraints between
them, e.g. precedence, rendezvous and mutual
exclusion. Usually, the system resource sharing
imposes these constraints.

4. Scenario simulation approach overview

Our approach proposes to combine the behaviour
and resource consumption models of used components
with an application model constructed for possible
critical execution scenarios. The component behaviour
model describes behaviour of each operation
implemented by the component. The component
resource model describes resource usage of an
operation implemented by the component. The
application scenario model defines the static structure,
internal and external events of the application for
critical scenarios. Critical scenarios are the scenarios
that may introduce CPU or memory overload. The
resulting set of models serves as an input for virtual
scheduling (simulation). The simulation output data
shows execution behaviour of the assembly tasks and
timing properties of those tasks, i.e. predicted
execution timeline, latency and resource utilization of
each task.

Summarizing, the key features of our approach are:
a) Predictions on timing properties are made by

simulation at an early stage of development.
b) It avoids combinatorial complexity of full

state-space analysis of a system by usage of
scenarios.

c) It takes task synchronization and scheduling
aspects into account.

The following section describes how the approach
should be implemented.

5. Predictable composition workflow

5.1. Workflow and its assumptions

The main objective of an assembly developer is,
given a set of available components and requirements
for an assembly, to embed the components in the
assembly satisfying the given requirements.

Addressing this objective, the proposed composition
workflow contains principal steps for the assembly
developer. These steps lead to prediction of resource
consumption, timing properties of an assembly and a
validation of the extra-functional requirements (see
Figure 3). These results are obtained already in the
design phase, prior to running the assembly on the
target device.

Input:

Application requirements
Set of components

Execution scenarios

Output:
Application timing property

Schedulability
Processor utilization

Predictable
Composition
Workflow

Input:
Application requirements

Set of components
Execution scenarios

Output:
Application timing property

Schedulability
Processor utilization

Predictable
Composition
Workflow

Figure 3. Conceptual view on the prediction-

enabling composition workflow.

The workflow works is based on two assumptions:
a) Resource usage property and behaviour of the

constituent components are specified and
available in the corresponding component
models.

b) An application developer is able to find out
critical scenarios of the application.

The remainder of this section defines consecutive
steps of the workflow.

5.2. Primary steps of the workflow

Component selection

When having a set of available components, a
developer selects and composes them into an assembly,
in order to meet the functional and extra-functional
requirements. According to the first assumption, the
selected components should have a resource model and
behaviour model. The models are described in a
modeling language that has all necessary primitives for
describing resource consumption and behaviour of
operations implemented by the component. These two
models are used to accompany an application scenario
model that is constructed in the next step and, thus,
complete the mosaic of the application behaviour. The
description of the models and further reference to
Figure 4 are given in the following text and Section 6.

Input:

Application requirements
Component resource model
Component behavior model

Application scenarios

Output:
Application timing property

Tasks schedulability
Processor utilization

Application scenario
model

Compile
models

Simulation
Schedulability analysis

Modeling language Compiler Scheduler

Input:
Application requirements

Component resource model
Component behavior model

Application scenarios

Output:
Application timing property

Tasks schedulability
Processor utilization

Application scenario
model

Compile
models

Simulation
Schedulability analysis

Modeling language Compiler Scheduler

Figure 4. Main steps in the predictable RT
composition workflow.

Application scenario model construction
For each critical or commonly used scenario, a

developer constructs an application scenario model.
The application scenario model consists of two parts:
(a) description of service instances and bindings
between them, particular for the selected scenario, and
(b) description of the application-level events and
active threads that trigger execution of operations of
the service instances. Afterwards, the application
scenario model is added to the model set for further
compilation. Multiple scenario models are possible,
depending on the number of found critical scenarios.

Compilation of the models

The application scenario, component resource and
component behaviour models are compiled for further
schedulability analysis. After this step, the model data
is prepared for simulation (virtual scheduling).

Simulation and schedulability analysis

An application developer applies a scheduler to the
compiled model set in order to simulate the execution
of the scenario specified in the related model. The
simulation data (CPU timeline of tasks execution) is
used for schedulability analysis. The analysis helps to
reason about application timing properties like
response time, latency of critical tasks, overall
schedulability and processor utilization bounds.

The predicted timing properties are checked against
the real-time requirements of an application. For
example, worst-case response time of a critical task is
checked against the deadline mentioned in the
requirements. If one of the requirements is not met, a
developer optimizes the composition and repeats the
workflow until all requirements are satisfied.

6. Models

The purpose of this section is to specify the models
introduced in the previous section. It is emphasized
here that the models are not a goal by themselves, but
are required for obtaining the resource consumption
and timing properties.

A real-time system model should be precise and
detailed enough to provide data for schedulability
analysis. On the other hand, the model should be kept
simple for construction and understanding. This trade
off brings the challenge of carefully selecting the
description data relevant for the model, and afterwards
representing that data, while avoiding complications.

According to Figure 4, we propose to model
application scenarios. This allows decomposing each
type of application behavior into a separate simple

scenario model. Thus, we can reduce the complexity of
the complete behavioral model of the application and
partly avoid exploration of all application states.

The following sub-sections specify the above-
mentioned models in detail.

6.1. Component resource model

The component resource model (RM) is one of the
models of the Robocop component model. RM
specifies the predicted resource consumption for all the
operations impl_opr implemented by services of an
executable component. Resources (r) can be memory,
CPU, etc. The predicted resource consumption is
specified as a (claim, release) tuple for non-processing
resources, like memory. For processing resources, like
the CPU, the consumption is specified as a single
claim.
m = RM,

 where m is a Resource Model and
 RM is a set of rm (resource usage of an operation).

rm = (impl_opr, resource, consumption),
 for operation impl_opr.

resource = r � {memory, cpu, bus, …}.
consumption = claim,

 in case resource is cpu.
consumption = (claim, release),

 in case resource is memory.
consumption = (claim, time),
 in case resource is bus.

A component developer defines the resource
consumption properties of an operation by worst-case
analysis. These properties are calculated only for the
operation body itself, excluding resource consumption
properties of called operations. This approach allows
calculating resource consumption of any sequences of
operation calls. In this paper, we do not address
platform and parametric variations of the operation
resource consumption. The resource model should be
specified for a particular reference platform.

6.2. Component behaviour model

The component behaviour model (BM) also belongs
to the Robocop component model. BM specifies the
behaviour of all operations impl_opr implemented by
services of an executable component. A semi-formal
specification of the model is as follows.
m = BM,

 where m is a Behaviour Model and
 BM is a set of bm (behaviour of an operation).

bm = (impl_opr, mutexed, behaviour, T),
 where impl_opr is the implemented operation and

behaviour is the operation behaviour description,

T is a set of t (task triggers the operation is
associated with),

 mutexed shows if the operation is mutexed.
mutexed = � {true, false}.
behaviour = (called_opr1, called_opr2, …called_oprn, CS),

where called_opr1, …called_oprn is a sequence of
called operations and
CS is a set of cs (critical sections).

called_opr = (opr, nmb_iterations, calling_type),
 where opr is the called operation and

nmb_iterations - number of times the operation is
called,

 calling_type � {synchronous, asynchronous}.
cs = (called_opr1, called_opr2, …called_oprn).
t = (periodicity, param, PRECED),

where periodicity � {periodic, sporadic,
aperiodic},
PRECED is a set of preced (preceding task
triggers),

 param includes various parameters of t.
param = (period, interarrival_time, priority, deadline,

offset, jitter).
preced = (t, ratio),

where t is a task trigger that precedes the specified
task trigger.

ratio = nmb_jobs_of_current_task /
nmb_jobs_of_preceding_task.

Firstly, for each operation impl_opr implemented by

an executable component, a component developer
defines its mutual exclusion property. If an operation is
mutexed, at most one thread can enter the operation at
the same time. Secondly, operation behaviour
describes a sequence of operation calls to other
interfaces made inside the implemented operation. For
example in Figure 5, the implemented operation
Decoder.decode() has a behaviour described by the
following call sequence: IGetElement.getFrame(),
IStoreElement.storeFrame(). The IGetElement and
IStoreElement are the interfaces provided by
ReadBuffer and WriteBuffer services correspondingly.

Figure 5. Sequence of operation calls

(behaviour) of decode() operation.

For each called operation called_opr in the
sequence, the number of iterations nmb_iterations and
calling type calling_type are specified. Additionally, a
set of critical sections CS can be specified if necessary
in behaviour. Critical section cs points out the

operation of which the execution cannot be pre-empted.
Please note that each called_opr must belong to one of
the required interfaces for the service.

Finally, a component developer must define the
operation autonomous behaviour T. We consider that
an operation has autonomous behaviour if there is at
least one task trigger t implemented by the operation.
One of the examples of the task trigger is an iterative
thread, triggered periodically by a timer. In the decoder
example, the decode() operation can implement an
iterative thread, which is triggered by the system timer
each 20 ms. Thus, the whole calling sequence repeats
each 20 ms. In the model, the task trigger properties
can be specified, including periodicity, period,
deadline, offset, precedence constraints preced, etc.

Concluding, these two models describe component
resource consumption and behaviour properties
independent of the application context where the
component is going to be used.

6.3. Application scenario model

The application scenario model (SM) specifies
application structure and behaviour for a critical or
commonly used execution scenario. Several SMs can
be built for an application, depending on a number of
interesting scenarios. An application developer is in
charge of the scenario models construction. The semi-
formal structure of the model is presented below.
SM = (appl, structure, E, T, depend),

where E is a set of e (event coming from outside of
the appl),
T is a set of t (task trigger the appl implements),
depend is a set of components used in the appl.

structure = (SI, B),
where SI is a set of si (service instances) and

 B is a set of b (bindings).
b = (from, from port, to, to port).
from, to = service instance.
from port, to port = port name (named interface).
e and t = (opr, periodicity, param, PRECED),

where opr is an operation triggered by the e or t,
 periodicity � {periodic, sporadic, aperiodic},
 PRECED is a set of preced (preceding e or t),
 param is number of parameters of e or t.

param = (period, interarrival_time, priority, deadline,
offset, jitter).
preced = (e or t, ratio),

where e or t is event or trigger which precedes the
current one.

ratio = nmb_current_events/nmb_preceding_events.

Firstly, an application developer specifies an

application structure for a scenario. The structure is
represented by a tuple containing SI (set of service
instances si) and B (set of bindings between the si). A

binding includes information about the bound service
instances from, and to, and in/out ports of the instances
from port, to port. In Figure 6, dashed lines represent
the bindings.

Figure 6. Example of application structure.

Secondly, the model defines the components

(depend) used in the application. This data links the
scenario model with the behaviour and resource
models of the corresponding components.

Finally, the application scenario model specifies sets
E and T of events e and in-application task triggers t,
respectively. We define an as event any influence
coming from outside to an application that changes the
current application state. Hardware interrupt, timer or
signal from an external sensor can trigger the event.
Normally, this influence is expressed as a call of one of
the operations of the application component.

Conceptually, an in-application task trigger is also
an event, but it comes from inside the application. In
other words, this task trigger is implemented by the
application. Please recall that we also have a task
trigger notion in the component behavior model. That
task trigger differs by being implemented inside a
component. The two types of task triggers are
separated into different models, because an in-
component task trigger must be specified by a
component developer and an in-application task trigger
must be specified by an application developer.

The application task trigger calls one of the
operations of the application components, thereby
starting the task action sequence. Therefore, the e and t
must be associated with the operation called first (opr).
In Figure 7, an application periodic task trigger calls
decode() operation each 40 ms. Thus, in the scenario
model the trigger should be associated with this
operation.

For each event e as well the in-application task
trigger t, its periodicity, parameters param and
precedence constraints preced are specified.

Figure 7. Task triggered by in-application

trigger.

When the scenario models are ready, an application
developer proceeds to the simulation phase.

7. Simulation and schedulability analysis

In the Space4U project, we have developed a
Robocop Integration Environment (RIE) tool that does
compilation of the above-mentioned models, simulation
of an application scenario and visualization of the
simulation data.

In the simulation and schedulability analysis phase,
an application developer brings together the
application scenario model and combined behaviour-
resource models of the components deployed in the
application. At this stage this stack of models can be
compiled by RIE. The conceptual goal of the
compilation is to identify and reconstruct a set of tasks
that the application executes for a particular scenario.

The task-set reconstruction uses only the data from
the three above-mentioned models. These models
contain all events; in-application and in-component
task triggers, as well as operation call sequences that
define a flow of control for the tasks.

For the decoder example, the task reconstruction
works as follows: the related behaviour model specifies
the operation call sequence of the operation decode():
getFrame(), storeFrame() (see Figure 5).
Afterwards, the compiler gathers from related behavior
models the behaviour of these two operations. The
operation getFrame() calls one operation belonging to
other interfaces: ILogData.logEvent()(see Figure 8).

Figure 8. getFrame() and storeFrame()

behaviour.

If an operation has an empty operation call sequence
(does not call operations belonging to other interfaces),

it is considered as a leaf and the task generation
proceeds to the next branch. Let us assume that
operation ILogData.logEvent() is such a leaf. The
next operation storeFrame() then also calls this leaf
operation: ILogData.logEvent() (see Figure 8). Thus,
the complete reconstructed sequence of the operations
executed in the task is as depicted in Figure 9.

Figure 9. Task generated from the models.

A resource consumption property of each operation

in this sequence is specified in the claim primitive in
the related component resource model (see Section
6.1). Knowing this data, we can calculate total resource
consumption of the task. For example, the CPU time
used by the task (execution time) is the sum of CPU
times used by the operations composing the task. In
Figure 9, the total execution time of the task amounts
to: 8ms + 5ms + 2ms + 5ms + 2ms = 22ms. The other
task parameters (period, offset, and deadline) and
precedence are obtained from corresponding task
trigger properties that are specified in models of the
previous section.

Synchronization constraints for each task are also
extracted from the models. The task precedence has
been already mentioned. Mutexed and critical section
cs, which are properties of an operation, as well as a
task precedence preced specified in the component
behavior model, all define synchronization constraints
of tasks. If a mutexed operation of the same service
instance is used by two different tasks, then only one of
the tasks can execute the operation at the same time.

An execution of the reconstructed tasks of the
scenario is simulated by a virtual scheduler. Its
scheduling algorithm should conform to the algorithm
of an operating system used for deployment of this
application. It can be round robin, RMA, EDF, etc.
During the simulation, the specified synchronization
constraints are taken into account. Therefore, the
virtual scheduler should incorporate deadline
prevention algorithms.

The simulation results are represented as a task
execution timeline (see Figure 10).

Figure 10. Task timeline execution of scenario

The schedulability analysis of the simulation data

gives us the timing properties of an application. The
response time, blocking time, number of missed
deadlines can be found for each task. Beside this, the
processor utilization bound can be analyzed per
application. The predicted properties can be validated
with respect to the application requirements.

8. Conclusions

We have extended the scenario-based approach for
predicting resource usage of component-based systems
in [2] with the specifications of task synchronization,
component behaviour model and application scenario
model. This allows simulation of the real-time task
execution per application scenario and handling of
synchronization constraints. Based on the simulation
results, a developer can derive the behavior and
dynamic resource consumption of an application per
scenario. Afterwards, a developer uses this data for
prediction of the real-time properties of an application.
The method was validated through the Robocop
Integration Environment tool that automates complex
operations and guides a developer through the
component composition process.

The proposed prediction approach has a number of
benefits. Firstly, it is general and can be applied in
different application domains and for various
architectural styles. For example, it works for
‘blackboard’ and ‘client-server’ architectures.
Secondly, the approach allows prediction of
dynamically changing resource consumption. Thirdly,
the approach is more accurate by incorporating task
synchronization constraints and distinguishing
synchronous and asynchronous communication.
Fourthly, the method is compositional, meaning that
the resource usage data of an application can be based
on data from its constituent components. Finally, the
use of scenarios decreases modeling complexity.

The approach also has some assumptions and
limitations that need further study. Firstly, it assumes
that resource consumption is constant per operation,
whereas it actually may depend on parameter values

passed to operations and/or application state. Secondly,
the method is restricted to the Robocop component
model, which has a notion of ‘requires interfaces’,
whereas other architectures, such as CORBA do not
provide this. Finally, the scenario-based approach
demands finding of critical scenarios, which are not
always easy to identify.

At the current stage, we have applied the prediction
approach to simple applications. In the future we intend
to perform case studies for real-world applications.

References

[1] Ivica Crnkovic and Magnus Larsson. Building Reliable
Component-based Software Systems, Artech House, 2002,
ISBN 1-580-53327-2
[2] Johan Muskens and Michel Chaudron. Prediction of Run-
time Consumption in Multi-task Component-Based Systems.
In Proceedings of 7th ICSE Symposium on Component Based
Software Engineering. May, 2004.
[3] Robocop public homepage. [http://www.extra.research.
philips.com/euprojects/robocop/]
[4] D. Box. Essential COM. Object Technology Series.
Addison-Wesley, 1997.
[5] T. Mowbray and R. Zahavi. Essential Corba. John Wiley
and Sons, 1995.
[6] R. van Ommering et al., The Koala component model for
consumer electronics software. IEEE Computer, 33 (3): 78-
85, Mar. 2002.
[7] I. Crnkovic, et al., Anatomy of a research project in
predictable assembly. In 5th ICSE Workshop on Component
Based Software Engineering. ACM, May, 2002.
[8] Kurt C. Wallnau. Volume III: A Technology for
Predictable Assembly from Certifiable Components. April
2003, CMU/ESI-2003-TR-009
[9] Scott A. Hissam, et al., Packaging Predictable Assembly
with Prediction-Enabled Component Technology. November
2001, CMU/ESI-2001-TR-024
[10] Scott Hissam et al., Predictable Assembly of Substation
Automation Systems: An Experiment Report. September
2002, CMU/SEI 2002-TR-031
[11] A. V. Fioukov et al., Estimation of static memory
consumption for systems built from source code components.
In Proc. 28th EUROMICRO conference, Component-Based
Software Engineering Track. IEEE Computer Society Press,
Sept. 2002.
[12] B. Selic, et al. Real-Time Object-Oriented Modeling,
Wiley, 1995, ISBN 0471599174.
[13] B.P. Douglass, Doing Hard Time. Developping Real-
time Systems with UML, Objects, Frameworks and Patterns,
Addison Wesley 1999, ISBN 0-201-49837-5.
[14] Vittorio Cortellessa, Rafaella Mirandola. PRIAM-UML:
a performance validation incremental methodology on early
UML diagrams. Elsevier Science B.V., 02/2002.
[15] M. de Jonge, J. Muskens and M. Chaudron. Scenario-
based prediction of run-time resource consumption in
component-based systems. In Proceedings of 6th ICSE
Workshop on CBSE. ACM. June, 2003.

