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Abstract 
 

This paper addresses the problem of predicting 
timing properties of multi-tasking component 
assemblies during the design phase. For real-time 
applications, it is of vital importance to guarantee that 
the timing requirements of an assembly will be met. We 
propose a simulation-based approach for predicting 
the real-time behaviour of an assembly based on 
models of its constituent components. 

Our approach extends the scenario-based method 
in [2] by offering a system model that is tailored to the 
domain of real-time applications. Contributions of this 
paper include the possibility to handle the following 
features: mutual exclusion, combinations of aperiodic 
and periodic tasks and synchronization constraints. 
The analytical approach we used in previous work 
cannot handle these features. Therefore, we introduce 
the simulation-based approach.  

Our simulator provides data about dynamic 
resource consumption and real-time properties like 
response time, blocking time and number of missed 
deadlines per task. We have validated our approach 
using a video-decoder application. 
 
1. Introduction 
 

High-volume embedded appliances such as PDAs, 
mobile phones, set-top boxes and DVD-players have a 
high evolution rate. Strong competition in this domain 
makes a rapid time to market as well as low 
development cost vital. Typical applications for these 
systems have real-time constraints, e.g., multimedia 
applications. In combination with the scarce resources 
these devices have, this leads to a major challenge for 

product designers, even more while the functions of 
these devices are always expanding. 

For decreasing time to market and supporting this 
evolution an open, component-based software 
architecture for a middleware layer has been proposed 
(in ITEA project Robocop [3]). The research described 
in this paper was conducted in ITEA project Space4U 
that uses this architecture as a starting point. It is aimed 
at improving the Robocop architecture by developing a 
framework that allows prediction of real-time 
properties and resource consumption of an application 
based on the components from which it is composed.  

Component-based technology complicates the 
prediction of resource consumption and timing 
properties of an application. In component-based 
systems, the actual behaviour and resource 
consumption is determined by a collection of internally 
developed and third-party components. Thus, the 
prediction task becomes twofold. First, find and 
express the component’s extra-functional properties. 
Second, combine these properties in order to predict 
the behaviour of the composition of the constituent 
components. In the sequel, we will denote an 
application also as an assembly, because it makes use 
of the underlying components. 

The challenge of predictable component assembly is 
of significant interest because of the rapid development 
of component-based software. Therefore, we present a 
brief literature overview. Some approaches give an 
engineering practice [7-9] to the problem. A very 
interesting technique that allows design-time 
estimations of real-time properties of component-based 
systems is presented in [10]. In this technique, many 
possible types of software constructions are taken into 
account, like synchronous and asynchronous 
communication, as well as synchronization constraints. 



Recent work on the prediction of performance for 
evolving architectures is described in [11]. This 
approach is based on collecting the component 
performance data on different platforms and 
interpolating it for new components or platforms. Real-
time frameworks have been introduced in the object-
oriented development field. Methods have emerged 
that enable execution of UML-like specifications, 
notably Room [12] and Rhapsody [13]. The PRIMA-
UML methodology [14] applies queuing networks and 
extends UML with a real-time performance model for 
system performance validation. The scenario-based 
approach [15] involves estimating static resource 
consumption of a component assembly. 

In contrast, through our scenario simulation 
approach we address a dynamic instead of static 
resource consumption, thereby giving more accuracy in 
the prediction of the assembly behaviour. With respect 
to task synchronization, we adopt the use of 
synchronization constraints for further adding accuracy 
in the prediction. The approach still requires little 
effort from an application developer, because the 
introduction of application scenarios narrows the state-
space and behavior of an application that the developer 
should model and simulate. 

This paper is structured as follows. Section 2 
presents the Robocop component model, as a starting 
point. Section 3 gives the definitions of the timing 
properties, tasks and synchronization constraints. 
Section 4 outlines the proposed approach. In Section 5 
we discuss the workflow of the approach. Section 6 
specifies models needed for simulation and effective 
prediction. Section 7 describes the simulation and 
schedulability analysis part of the prediction technique. 
Section 8 concludes with the benefits and drawbacks of 
the proposed prediction approach. 
 
2. Robocop component model 
 

In this section we discuss the Robocop component 
model. The model is inspired by existing component-
based architectures, such as COM [4], CORBA [5], 
and Koala [6]. A Robocop component is a set of 
possibly related models M (see Figure 1). Each 
individual model m provides a particular type of 
information about the component. Models can be 
represented in human-readable form (e.g. 
documentation) or in binary code. One of the models is 
the executable model that contains the executable 
component. Other examples of models are: resource 
model, functional model, and behavior model. 

 
Figure 1. Example Robocop component model 

 
A component offers functionality through a set of 

‘services’ P (see Figure 2). Services are static entities, 
which are the Robocop equivalents of public classes in 
object-oriented (OO) programming languages. More 
formally, we can specify an arbitrary executable model 
m by:  
m = P, 

 where m is an Executable Model and  
 P is a set of p (services). 

Services are instantiated at run-time, using a service 
manager. The resulting entity is called ‘service 
instance’, which is a Robocop equivalent of an object 
in OO programming languages. 

 

 

Figure 2. Example of executable component 
representation. 

 
A Robocop service may define several interfaces 

(ports). We distinguish a set of ‘provides’ ports PR and 
a set of ‘requires’ ports REQ. The former defines 
interfaces that are offered by the service, while the 
latter defines interfaces that the service needs from 
other services in order to operate properly. An interface 
is defined as a set of implemented operations impl_opr. 
A service p being part of the above-mentioned 
executable model is specified by: 
p = (PR, REQ), 

 where PR is a set of pr (provided ports) and 
 REQ is a set of req (required ports), 

pr = (name, interface), 
req = (name, interface), 
interface = O, 
 where O is a set of impl_opr (impl’ted operations). 



Please note that a Robocop service is an equivalent 
to a component in COM or CORBA, i.e. a service is a 
subject of composition, and it has input and output 
ports. A Robocop component is a deployable container 
that packages these services. Therefore, in the Robocop 
context the term composition means a composition of 
services. 

In Robocop, as well as in other component models, 
service interfaces and service implementations are 
separated to support “plug-compatibility”. This allows 
different services that implement the same interface to 
be replaced. As a consequence, the actual service 
implementations to which a service will be bound do 
not need to be known at the time of designing that 
service. This implies that resource consumption cannot 
be completely determined for an operation, until an 
application binds the required interfaces of the instance 
of the service to provided interfaces. 

The Robocop architecture implies no 
implementation-level constraints. A service can 
implement any number of threads. Beside this, 
synchronous and asynchronous communication types 
are possible. 
 
3. Timing properties, tasks and 
synchronization 
 

This section defines the basic terms used in the 
paper, e.g. timing property, task and task 
synchronization constraints. There is a clear difference 
between the component and application timing 
properties. The component timing properties are 
independent from system run-time execution and 
scheduling. In most of the cases, these properties are: 
worst-case, mean-case and best-case execution times 
per operation. 

The application timing properties, instead, are 
closely coupled to run-time instances, tasks and 
scheduling algorithms used in the system. We 
concentrate on the following timing properties: 
response and blocking times of a task as well as the 
number of missed deadlines of a task. 

The response time of a task is not just a sum of 
execution times of the operations comprising the task. 
Usually, the response time is composed of the 
execution time, blocking time and preemption time of 
the task. Therefore, for the assembly timing property, 
the task synchronization and scheduling aspects should 
be considered. 

In out context, the task is an event-triggered 
sequence of executed operations. The operations 
composing a sequence may be implemented by 
different services. The operations within the sequence 

may be called synchronously and asynchronously. The 
tasks my have synchronization constraints between 
them, e.g. precedence, rendezvous and mutual 
exclusion. Usually, the system resource sharing 
imposes these constraints. 
 
4. Scenario simulation approach overview 
 

Our approach proposes to combine the behaviour 
and resource consumption models of used components 
with an application model constructed for possible 
critical execution scenarios. The component behaviour 
model describes behaviour of each operation 
implemented by the component. The component 
resource model describes resource usage of an 
operation implemented by the component. The 
application scenario model defines the static structure, 
internal and external events of the application for 
critical scenarios. Critical scenarios are the scenarios 
that may introduce CPU or memory overload. The 
resulting set of models serves as an input for virtual 
scheduling (simulation). The simulation output data 
shows execution behaviour of the assembly tasks and 
timing properties of those tasks, i.e. predicted 
execution timeline, latency and resource utilization of 
each task. 

Summarizing, the key features of our approach are: 
a) Predictions on timing properties are made by 

simulation at an early stage of development. 
b) It avoids combinatorial complexity of full 

state-space analysis of a system by usage of 
scenarios. 

c) It takes task synchronization and scheduling 
aspects into account. 

The following section describes how the approach 
should be implemented. 
 
5. Predictable composition workflow 
 
5.1. Workflow and its assumptions 
 

The main objective of an assembly developer is, 
given a set of available components and requirements 
for an assembly, to embed the components in the 
assembly satisfying the given requirements.  

Addressing this objective, the proposed composition 
workflow contains principal steps for the assembly 
developer. These steps lead to prediction of resource 
consumption, timing properties of an assembly and a 
validation of the extra-functional requirements (see 
Figure 3). These results are obtained already in the 
design phase, prior to running the assembly on the 
target device. 
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Figure 3. Conceptual view on the prediction-

enabling composition workflow. 
 

The workflow works is based on two assumptions: 
a) Resource usage property and behaviour of the 

constituent components are specified and 
available in the corresponding component 
models. 

b) An application developer is able to find out 
critical scenarios of the application. 

The remainder of this section defines consecutive 
steps of the workflow.  
 
5.2. Primary steps of the workflow  
 
Component selection 

When having a set of available components, a 
developer selects and composes them into an assembly, 
in order to meet the functional and extra-functional 
requirements. According to the first assumption, the 
selected components should have a resource model and 
behaviour model. The models are described in a 
modeling language that has all necessary primitives for 
describing resource consumption and behaviour of 
operations implemented by the component. These two 
models are used to accompany an application scenario 
model that is constructed in the next step and, thus, 
complete the mosaic of the application behaviour. The 
description of the models and further reference to 
Figure 4 are given in the following text and Section 6. 
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Figure 4. Main steps in the predictable RT 
composition workflow. 

 

Application scenario model construction 
For each critical or commonly used scenario, a 

developer constructs an application scenario model. 
The application scenario model consists of two parts: 
(a) description of service instances and bindings 
between them, particular for the selected scenario, and 
(b) description of the application-level events and 
active threads that trigger execution of operations of 
the service instances. Afterwards, the application 
scenario model is added to the model set for further 
compilation. Multiple scenario models are possible, 
depending on the number of found critical scenarios. 
 
Compilation of the models 

The application scenario, component resource and 
component behaviour models are compiled for further 
schedulability analysis. After this step, the model data 
is prepared for simulation (virtual scheduling). 
 
Simulation and schedulability analysis 

An application developer applies a scheduler to the 
compiled model set in order to simulate the execution 
of the scenario specified in the related model. The 
simulation data (CPU timeline of tasks execution) is 
used for schedulability analysis. The analysis helps to 
reason about application timing properties like 
response time, latency of critical tasks, overall 
schedulability and processor utilization bounds.  

The predicted timing properties are checked against 
the real-time requirements of an application. For 
example, worst-case response time of a critical task is 
checked against the deadline mentioned in the 
requirements. If one of the requirements is not met, a 
developer optimizes the composition and repeats the 
workflow until all requirements are satisfied. 
 
6. Models 
 

The purpose of this section is to specify the models 
introduced in the previous section. It is emphasized 
here that the models are not a goal by themselves, but 
are required for obtaining the resource consumption 
and timing properties. 

A real-time system model should be precise and 
detailed enough to provide data for schedulability 
analysis. On the other hand, the model should be kept 
simple for construction and understanding. This trade 
off brings the challenge of carefully selecting the 
description data relevant for the model, and afterwards 
representing that data, while avoiding complications.    

According to Figure 4, we propose to model 
application scenarios. This allows decomposing each 
type of application behavior into a separate simple 



scenario model. Thus, we can reduce the complexity of 
the complete behavioral model of the application and 
partly avoid exploration of all application states. 

The following sub-sections specify the above-
mentioned models in detail. 
 
6.1. Component resource model 
 

The component resource model (RM) is one of the 
models of the Robocop component model. RM 
specifies the predicted resource consumption for all the 
operations impl_opr implemented by services of an 
executable component. Resources (r) can be memory, 
CPU, etc. The predicted resource consumption is 
specified as a (claim, release) tuple for non-processing 
resources, like memory. For processing resources, like 
the CPU, the consumption is specified as a single 
claim. 
m = RM, 

 where m is a Resource Model and 
 RM is a set of rm (resource usage of an operation). 

rm = (impl_opr, resource, consumption), 
 for operation impl_opr. 

resource = r � {memory, cpu, bus, …}. 
consumption = claim, 

  in case resource is cpu. 
consumption = (claim, release), 

  in case resource is memory. 
consumption = (claim, time), 
  in case resource is bus. 
 

A component developer defines the resource 
consumption properties of an operation by worst-case 
analysis. These properties are calculated only for the 
operation body itself, excluding resource consumption 
properties of called operations. This approach allows 
calculating resource consumption of any sequences of 
operation calls. In this paper, we do not address 
platform and parametric variations of the operation 
resource consumption. The resource model should be 
specified for a particular reference platform. 
 
6.2. Component behaviour model 
 

The component behaviour model (BM) also belongs 
to the Robocop component model. BM specifies the 
behaviour of all operations impl_opr implemented by 
services of an executable component. A semi-formal 
specification of the model is as follows. 
m = BM, 

 where m is a Behaviour Model and 
 BM is a set of bm (behaviour of an operation). 

bm = (impl_opr, mutexed, behaviour, T), 
 where impl_opr is the implemented operation and 

behaviour is the operation behaviour description, 

T is a set of t (task triggers the operation is 
associated with), 

 mutexed shows if the operation is mutexed. 
mutexed = � {true, false}. 
behaviour = (called_opr1, called_opr2,  …called_oprn, CS), 

where called_opr1, …called_oprn is a sequence of 
called operations and 
CS is a set of cs (critical sections). 

called_opr = (opr, nmb_iterations, calling_type), 
 where opr is the called operation and 

nmb_iterations - number of times the operation is 
called, 

 calling_type � {synchronous, asynchronous}. 
cs = (called_opr1, called_opr2,  …called_oprn). 
t = (periodicity, param, PRECED), 

where periodicity � {periodic, sporadic, 
aperiodic}, 
PRECED is a set of preced (preceding task 
triggers), 

 param includes various parameters of t. 
param = (period, interarrival_time, priority, deadline, 

offset, jitter). 
preced = (t, ratio), 

where t is a task trigger that precedes the specified 
task trigger. 

ratio = nmb_jobs_of_current_task / 
nmb_jobs_of_preceding_task. 

 
Firstly, for each operation impl_opr implemented by 

an executable component, a component developer 
defines its mutual exclusion property. If an operation is 
mutexed, at most one thread can enter the operation at 
the same time. Secondly, operation behaviour 
describes a sequence of operation calls to other 
interfaces made inside the implemented operation. For 
example in Figure 5, the implemented operation 
Decoder.decode() has a behaviour described by the 
following call sequence: IGetElement.getFrame(), 
IStoreElement.storeFrame(). The IGetElement and 
IStoreElement are the interfaces provided by 
ReadBuffer and WriteBuffer services correspondingly. 
 

 
Figure 5. Sequence of operation calls 

(behaviour) of decode() operation. 
 

For each called operation called_opr in the 
sequence, the number of iterations nmb_iterations and 
calling type calling_type are specified. Additionally, a 
set of critical sections CS can be specified if necessary 
in behaviour. Critical section cs points out the 



operation of which the execution cannot be pre-empted. 
Please note that each called_opr must belong to one of 
the required interfaces for the service. 

Finally, a component developer must define the 
operation autonomous behaviour T. We consider that 
an operation has autonomous behaviour if there is at 
least one task trigger t implemented by the operation. 
One of the examples of the task trigger is an iterative 
thread, triggered periodically by a timer. In the decoder 
example, the decode() operation can implement an 
iterative thread, which is triggered by the system timer 
each 20 ms. Thus, the whole calling sequence repeats 
each 20 ms. In the model, the task trigger properties 
can be specified, including periodicity, period, 
deadline, offset, precedence constraints preced, etc. 

Concluding, these two models describe component 
resource consumption and behaviour properties 
independent of the application context where the 
component is going to be used. 
 
6.3. Application scenario model 
 

The application scenario model (SM) specifies 
application structure and behaviour for a critical or 
commonly used execution scenario. Several SMs can 
be built for an application, depending on a number of 
interesting scenarios. An application developer is in 
charge of the scenario models construction. The semi-
formal structure of the model is presented below. 
SM = (appl, structure, E, T, depend), 

where E is a set of e (event coming from outside of 
the appl), 
T  is a set of t (task trigger the appl implements), 
depend is a set of components used in the appl. 

structure = (SI, B), 
where SI is a set of si (service instances) and 

 B is a set of b (bindings). 
b = (from, from port, to, to port). 
from, to = service instance. 
from port, to port = port name (named interface).  
e and t = (opr, periodicity, param, PRECED), 

where opr is an operation triggered by the e or t, 
 periodicity � {periodic, sporadic, aperiodic}, 
 PRECED is a set of preced (preceding e or t), 
 param is number of parameters of e or t. 

param = (period, interarrival_time, priority, deadline, 
offset, jitter). 
preced = (e or t, ratio), 

where e or t is event or trigger which precedes the 
current one. 

ratio = nmb_current_events/nmb_preceding_events. 
 
Firstly, an application developer specifies an 

application structure for a scenario. The structure is 
represented by a tuple containing SI (set of service 
instances si) and B (set of bindings between the si). A 

binding includes information about the bound service 
instances from, and to, and in/out ports of the instances 
from port, to port. In Figure 6, dashed lines represent 
the bindings. 

 

 
Figure 6. Example of application structure. 

 
Secondly, the model defines the components 

(depend) used in the application. This data links the 
scenario model with the behaviour and resource 
models of the corresponding components. 

Finally, the application scenario model specifies sets 
E and T of events e and in-application task triggers t, 
respectively. We define an as event any influence 
coming from outside to an application that changes the 
current application state. Hardware interrupt, timer or 
signal from an external sensor can trigger the event. 
Normally, this influence is expressed as a call of one of 
the operations of the application component.  

Conceptually, an in-application task trigger is also 
an event, but it comes from inside the application. In 
other words, this task trigger is implemented by the 
application. Please recall that we also have a task 
trigger notion in the component behavior model. That 
task trigger differs by being implemented inside a 
component. The two types of task triggers are 
separated into different models, because an in-
component task trigger must be specified by a 
component developer and an in-application task trigger 
must be specified by an application developer. 

The application task trigger calls one of the 
operations of the application components, thereby 
starting the task action sequence. Therefore, the e and t 
must be associated with the operation called first (opr). 
In Figure 7, an application periodic task trigger calls 
decode() operation each 40 ms. Thus, in the scenario 
model the trigger should be associated with this 
operation. 

For each event e as well the in-application task 
trigger t, its periodicity, parameters param and 
precedence constraints preced are specified. 



 
Figure 7. Task triggered by in-application 

trigger. 
 

When the scenario models are ready, an application 
developer proceeds to the simulation phase. 
 
7. Simulation and schedulability analysis 
 

In the Space4U project, we have developed a 
Robocop Integration Environment (RIE) tool that does 
compilation of the above-mentioned models, simulation 
of an application scenario and visualization of the 
simulation data. 

In the simulation and schedulability analysis phase, 
an application developer brings together the 
application scenario model and combined behaviour-
resource models of the components deployed in the 
application. At this stage this stack of models can be 
compiled by RIE. The conceptual goal of the 
compilation is to identify and reconstruct a set of tasks 
that the application executes for a particular scenario.  

The task-set reconstruction uses only the data from 
the three above-mentioned models. These models 
contain all events; in-application and in-component 
task triggers, as well as operation call sequences that 
define a flow of control for the tasks.  

For the decoder example, the task reconstruction 
works as follows: the related behaviour model specifies 
the operation call sequence of the operation decode(): 
getFrame(), storeFrame() (see Figure 5). 
Afterwards, the compiler gathers from related behavior 
models the behaviour of these two operations. The 
operation getFrame() calls one operation belonging to 
other interfaces: ILogData.logEvent()(see Figure 8).  

 

 
Figure 8. getFrame() and storeFrame() 

behaviour. 
 

If an operation has an empty operation call sequence 
(does not call operations belonging to other interfaces), 

it is considered as a leaf and the task generation 
proceeds to the next branch. Let us assume that 
operation ILogData.logEvent() is such a leaf. The 
next operation storeFrame() then also calls this leaf 
operation: ILogData.logEvent() (see Figure 8). Thus, 
the complete reconstructed sequence of the operations 
executed in the task is as depicted in Figure 9.  

 

 
Figure 9. Task generated from the models. 

 
A resource consumption property of each operation 

in this sequence is specified in the claim primitive in 
the related component resource model (see Section 
6.1). Knowing this data, we can calculate total resource 
consumption of the task. For example, the CPU time 
used by the task (execution time) is the sum of CPU 
times used by the operations composing the task. In 
Figure 9, the total execution time of the task amounts 
to: 8ms + 5ms + 2ms + 5ms + 2ms = 22ms. The other 
task parameters (period, offset, and deadline) and 
precedence are obtained from corresponding task 
trigger properties that are specified in models of the 
previous section. 

Synchronization constraints for each task are also 
extracted from the models. The task precedence has 
been already mentioned. Mutexed and critical section 
cs, which are properties of an operation, as well as a 
task precedence preced specified in the component 
behavior model, all define synchronization constraints 
of tasks. If a mutexed operation of the same service 
instance is used by two different tasks, then only one of 
the tasks can execute the operation at the same time.  

An execution of the reconstructed tasks of the 
scenario is simulated by a virtual scheduler. Its 
scheduling algorithm should conform to the algorithm 
of an operating system used for deployment of this 
application. It can be round robin, RMA, EDF, etc. 
During the simulation, the specified synchronization 
constraints are taken into account. Therefore, the 
virtual scheduler should incorporate deadline 
prevention algorithms. 

The simulation results are represented as a task 
execution timeline (see Figure 10). 



 
Figure 10. Task timeline execution of scenario 

 
The schedulability analysis of the simulation data 

gives us the timing properties of an application. The 
response time, blocking time, number of missed 
deadlines can be found for each task. Beside this, the 
processor utilization bound can be analyzed per 
application. The predicted properties can be validated 
with respect to the application requirements. 
 
8. Conclusions 
 

We have extended the scenario-based approach for 
predicting resource usage of component-based systems 
in [2] with the specifications of task synchronization, 
component behaviour model and application scenario 
model. This allows simulation of the real-time task 
execution per application scenario and handling of 
synchronization constraints. Based on the simulation 
results, a developer can derive the behavior and 
dynamic resource consumption of an application per 
scenario. Afterwards, a developer uses this data for 
prediction of the real-time properties of an application. 
The method was validated through the Robocop 
Integration Environment tool that automates complex 
operations and guides a developer through the 
component composition process. 

The proposed prediction approach has a number of 
benefits. Firstly, it is general and can be applied in 
different application domains and for various 
architectural styles. For example, it works for 
‘blackboard’ and ‘client-server’ architectures. 
Secondly, the approach allows prediction of 
dynamically changing resource consumption. Thirdly, 
the approach is more accurate by incorporating task 
synchronization constraints and distinguishing 
synchronous and asynchronous communication. 
Fourthly, the method is compositional, meaning that 
the resource usage data of an application can be based 
on data from its constituent components. Finally, the 
use of scenarios decreases modeling complexity. 

The approach also has some assumptions and 
limitations that need further study. Firstly, it assumes 
that resource consumption is constant per operation, 
whereas it actually may depend on parameter values 

passed to operations and/or application state. Secondly, 
the method is restricted to the Robocop component 
model, which has a notion of ‘requires interfaces’, 
whereas other architectures, such as CORBA do not 
provide this. Finally, the scenario-based approach 
demands finding of critical scenarios, which are not 
always easy to identify. 

At the current stage, we have applied the prediction 
approach to simple applications. In the future we intend 
to perform case studies for real-world applications. 
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