

I. INTRODUCTION
 Embedded systems are often characterized by two
closely coupled properties: limited resources and real-
time constraints for executing running applications. The
limitation of resources, such as memory size, memory
bus and processing power, makes it more difficult to
guarantee the real-time execution of applications.
However, having that guarantee is crucial for e.g.
multimedia devices.
 During the design phase, in order to ensure that an
application will fit on a target device, it is important to
determine or predict the resource usage of an
application. The resource-usage prediction is a technique
to estimate the amount of consumed resources by
analyzing the design and/or implementation of an
application.

 In the Space4U1 project [2], which is an extension of
the ROBOCOP project [1], a component-based
architectural framework was introduced for the
middleware development of high-volume embedded
devices. Component-based development complicates the
resource-usage prediction per application, because actual
resource consumption is distributed over individual
components. In this paper, we propose a technique for
predicting the timing property of a component
composition, also called a component assembly.

 The key problem of such a predictable assembly is to
first find and express a component’s timing property,
and, second to combine them in order to make
predictions over a composition of those components. It
should be noticed that there is a clear difference between
the component and application timing properties. In case
of component development, the designer deals with
metrics such as worst-case, mean-case and best-case
execution times per function. In case of component

1 Space4U is part of the ITEA research programme funded by the
European Union.

composition or application development, the designer
focuses on finding the following properties: end-to-end
response time and processor utilization bound of an
application.

II. COMPONENT DEPENDENCIES
 In the Space4U project and in this paper, we propose a
predictable assembly technique that allows the
translation of an already known property of components
into a property of an application assembling these
components. This technique is completing and refining
the coarse scenario-based predictable assembly model
[3] that was proposed in the ROBOCOP project.
 A primary benefit of the ROBOCOP framework is that
a component designer specifies not only provided
interfaces, but also required interfaces of a component.
While provided interfaces help an application developer
to find a component that would do the work, the required
interfaces specify what other components a particular
component may depend upon. Finally, the provided and
required interfaces allow the application developer to
describe explicitly static component dependencies via
interfaces within an application (see the simple decoder
example in Figure 1).

Timer
(periodically

wakes up & calls
decoder function)

Decoder

IDecode {
 decodeHQ();
 decodeLQ();
}

ReadBufferIBuffer

WriteBufferIBuffer
Legenda:

IBuffer {
 getFrame();
 storeFrame();
}

IDecode

Decoder - component

- required interface

- provided interface

- component dependencies
Figure 1. Static component dependencies for decoder

A Scenario-Based Approach for Predicting
Timing Properties of Real-Time Applications

Egor Bondarev
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, Netherlands
Phone: +31 (0)40 247 2480
E-mail : E.Bondarev@tue.nl

Peter H.N. de With
 LogicaCMG/TU Eindhoven

 P.O. Box 513, 5600 MB Eindhoven, Netherlands
 Phone: +31 (0)40 247 8210, +31 (0)40 29 57 777

 E-mail : mailto:P.H.N.de.With@tue.nl

 Normally, each interface encapsulates a set of
functions. Taking into account interface dependencies
and, analyzing the most commonly used scenarios of an
application, a developer can identify function call
sequences per task. Following this, if the timing
properties (WCET) of those functions involved in a task
execution are given by a component developer, we can
find the timing property of the complete task, while
considering the commonly used scenario. The scenario
can be represented by a sequence chart diagram (see the
“high-quality decoding” scenario in Figure 2).

Timer Decoder

decodeHQ()

ReadBuffer

getFrame()

2 ms

10 ms

storeFrame()

WriteBuffer

2 ms

14ms

Figure 2. Sequence chart diagram for a decoding task

 Thus, with the predictable assembly technique, we can
derive the execution (response) time of a complete task
in an application.
 Unfortunately, the ROBOCOP predictable assembly
model does not consider two important properties: using
a multitude of tasks in an application and means for
synchronization between tasks. Especially the last
property is extremely important for real-time
performance analysis.

III. AN IMPROVED MODEL FOR PREDICTION
 In order to find a processor utilization rate of a task,
the execution time can be divided by a period or
minimum inter-arrival time of a task. The cumulative
processor utilization rate of a set of application tasks
represents the application processor utilization bound.

 The described scenario-based approach in Section II is
a cornerstone for the predictable assembly technique. To
apply the technique in practice, we introduce an
assembly description language. The language allows an
application developer to specify all behavioral and
aspects of an application that may influence resource
usage. We have found that a significant part of those
aspects deal with synchronization of tasks. The final
result of the specification is an application task model.

 The designer, while writing the specification, takes as

an input (see Figure 3):
a) Available component description (incl. WCET

per function and provides/requires interfaces),
b) Commonly used scenarios.

Figure 3. Work flow of the predictable assembly technique

 In the assembly specification model, the designer
specifies component dependencies, describes tasks and
corresponding function sequence calls, and finds
synchronization aspects between the tasks. When the
specification is available, it actually represents
application tasks properties. Having the tasks properties,
it is possible to schedule these tasks. Therefore, the final
step of the predictable assembly technique is to apply
virtual scheduling on the application model. As a result,
the following application timing properties are found:

- Response time of critical tasks,
- Processor utilization bound,
- Schedulability of the application on a target.

IV. CONCLUSIONS
 The improved predictable assembly technique enables
the prediction of application timing properties already at
the design stage. The technique can be extended for
predicting memory and bus usage.
 For future work, we propose to conduct several case
studies with multimedia applications and investigate a
prediction-error rate of the technique for different
application domains.

REFERENCES
[1] ROBOCOP public home page

[http://www.extra.research.philips.com/euprojects/robocop/]
[2] Space4U public home page

[http://www.extra.research.philips.com/euprojects/space4u/]
[3] Merijn de Jonge, Johan Muskens and Michel Chaudron.

Scenario-Based Prediction of Run-time Resource Consumption
in Component-Based Software Systems. In Proceedings of 6th
CBSE conference. May 3-4, 2003

Input:
Set of components +
Common scenarios

Output
Assembly timing property +

Processor utilization

Assembly model
(tasks, synchronization

constraints)

Virtual scheduling
of the tasks

Specification language Scheduler

Input:
Set of components +
Common scenarios

Output
Assembly timing property +

Processor utilization

Assembly model
(tasks, synchronization

constraints)

Virtual scheduling
of the tasks

Specification languageSpecification language SchedulerScheduler

